ANOVA insights

Let's revisit an example from a previous class where we looked at data showing the number of job offers that a sample of students had at the time of graduation, together with their major field of study

Observations							
DS	Bio	Econ					
2	3	2					
5	0	2					
1	1	0					
	2						
n = 3	n = 4	n = 3					
$\bar{y} = 2.67$	$\bar{y} = 1.5$	$\bar{y} = 1.33$					

One way to think about each data value is as follows

Observation = Grand mean + Factor effect + Residual

Mathematically, this can be written as

$$y_i = (\bar{\bar{y}}) + (\bar{y} - \bar{\bar{y}}) + (y_i - \bar{y})$$

where $\overline{y} = \text{Grand mean}, \ \overline{y} = \text{group mean}, \ y_i = \text{data value (observation)}$

Exercise:

- 1. Write the first couple of observations in the job offers data in this form.
- 2. Show that the general form of the equation given above always holds.
- 3. Explain each term in the parentheses in a practically useful way. E.g., each data value is, essentially, the sum of ...

ANOVA insights (continued)

Here's the equation again

Observation = Grand mean + Factor effect + Residual

Let's make a separate table for each term in the equation:

Observations							
DS	Bio	Econ					
2	3	2					
5	0	2					
1	1	0					
	2						
$\bar{y} = 2.67$	$\bar{y} = 1.5$	$\bar{y} = 1.33$					

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Grand mean		Factor effect			Residual			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DS	Bio	Econ	DS	Bio	Econ	DS	Bio	Econ
$ \begin{vmatrix} 1.8 & 1.8 & 1.8 & 0.87 & -0.3 & -0.47 & 2.33 & -1.5 & 0.67 \\ 1.8 & 1.8 & 1.8 & 0.87 & -0.3 & -0.47 & -1.67 & -0.5 & -1.38 \end{vmatrix} $	1.8	1.8	1.8	0.87	-0.3	-0.47	-0.67	1.5	0.67
1.8 1.8 1.8 0.87 -0.3 -0.47 -1.67 -0.5 -1.33	1.8	1.8	1.8	0.87	-0.3	-0.47	2.33	-1.5	0.67
	1.8	1.8	1.8	0.87	-0.3	-0.47	-1.67	-0.5	-1.33
1.8 -0.3 0.5		1.8			-0.3			0.5	

 $\sum 1.8^2 = 32.4$ $\sum \text{all}^2 = 3.26667$ $\sum \text{all}^2 = 16.33333$

Exercise:

- 1. Can you identify SS_B and SS_W in the above sums?
- 2. Add the 3 sums given above
- 3. Compute $\sum (y_i)^2$ for the data values (i.e., in the 1st table).

Moral of the story?!

It turns out that

 \sum Observation² = \sum Grand mean² + \sum Factor effect² + \sum Residual²