CW Exercise

Recall the following exercise from a recent class, where we found the line of best fit for a dataset containing only 3 points?

x_{i}	y_{i}
0	12
1	30
2	28

A very small dataset consisting of only 3 observations is shown in the table, together with a scatter plot of y vs x. We want to fit a straight line approximation to the plot, as shown by the dotted line.

Consider the straight line: $\hat{y}=m x+b$.
Our goal is to find numerical values of m and b that give the "best" straight line approximation. Here are the steps:

1. For each i, find the error: $e_{i}=y_{i}-\hat{y}_{i}$

Each e_{i} will be a function of m and b (only!).
2. Compute the function: $f=\sum\left(e_{i}\right)^{2}$

This function is the sum of the square of the errors.
3. Next, we want to minimize f - remember calculus?!

Find the derivative of f with respect to b.
Then, find the derivative of f with respect to m.
4. Set $\frac{d f}{d b}=0$ and $\frac{d f}{d m}=0$, and solve simultaneously for m and b.

5 . Well, then that is your best straight line!

CW Exercise (continued)

We want to extend that same strategy to 3 dimensions: Our dataset now contains 2 predictor variables (x, y) and 1 response variable (z). The goal is to find the plane of best fit using the least squares method - i.e., minimize the sum of the square of the errors. Here are the steps:

Assume the plane has the equation: $\hat{z}=b+m x+n y$

x_{i}	y_{i}	z_{i}
0	0	12
1	0	20
0	1	42
3	3	30

1. For each i, find the error: $e_{i}=z_{i}-\hat{z}_{i}$

Each e_{i} will be a function of b, m, n.
2. Compute the function: $f=\sum\left(e_{i}\right)^{2}$

This function is the sum of the square of the errors.
3. Next, we want to minimize f using calculus.

Find the derivative of f with respect to b.
Then, find the derivative of f with respect to m.
Then, find the derivative of f with respect to n.
4. Set $\frac{d f}{d b}=0, \frac{d f}{d m}=0, \frac{d f}{d n}=0$, and solve simultaneously for m, n, b.
5. Well, then that is your best-fit plane!

MLR: Key ideas

- Suppose we have a dataset containing k predictor variables $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and 1 response variable (y).
- We want to model the relationship between y and the predictor variables using a "hyper-plane" of best fit

$$
\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{k} x_{k}
$$

where the $b_{0}, b_{1}, b_{2}, \ldots$, etc, are constants that we must find to best fit the data.

- How? In principle, it is straightforward to extend the exercise we just did in 3 dimensions: We formulate and minimize the sum of the square of the errors, which is a function of the form: $f=\sum\left(e_{i}\right)^{2}$
- Many ideas from simple linear regression extend readily to multiple linear regression:

1. The assumptions \& conditions
2. Interpretation of slope(s)
3. Residuals
4. R-squared
5. Inference strategies

MLR coverage: 4 key aspects

In this course we will cover the following aspects of multiple linear regression:

1. How to setup models with multiple predictors; how to interpret results.
2. How to do inference for MLR.
3. Model selection/refinement.
4. Model diagnostics.
