
Part I

Basic Concepts of Modelling

1

Chapter 2

Systems of ordinary differential
equations

We have already seen how to use a single differential equation to model
a function that represents some quantity of interest (e.g., population of a
species, height of a growing plant, amount of pollutant in a lake). The power
of differential equations is considerably stronger when they are applied to
modeling two or more functions simultaneously. The resulting model consists
of a system of differential equations in one independent variable, and several
dependent variables. The study of such systems will be the focus of this
chapter.

2.1 Predator and prey model

In ecological modelling, the effect of predator-prey interaction on the popula-
tion dynamics of the respective species is of interest. One of the best-known
methods for describing such interactions is the Lotka-Volterra model, which
consists of the following system of differential equations

dx

dt
= k1x− k2xy , (2.1)

dy

dt
= k3xy − k4y , (2.2)

Here x and y are functions of time t, and represent the prey and the predator
population, respectively. Parameters k1, k2, k3 and k4 are positive constants,

3

4CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

representing the prey growth rate, prey death rate, predator growth rate
and predator death rate, respectively. Typically, the model description also
includes the initial prey and predator populations, specified at some common
time t0.

The Lotka-Volterra model is not amenable to analytical solution methods,
and is usually solved numerically. We illustrate the process using the forward
Euler method, which essentially consists of replacing the time derivatives by
forward difference approximations. If we take t0 = 0, and denote the initial
conditions as x(0) = x0 and y(0) = y0, the difference equations are

xn+1 = xn + (k1xn − k2xnyn) ∆t ,

yn+1 = yn + (k3xnyn − k4yn) ∆t ,

Here n = 0, 1, 2, ..., xn and yn are the approximate solutions at time tn, and
the time step is ∆t (assumed constant here).

For the purpose of illustration, we use the following parameter values:
k1 = 0.5, k2 = 0.02, k3 = 0.004 and k4 = 0.4. We also assume at time
t = 0, x0 = 20, y0 = 40. The numerical simulation is carried out to a
final time of tn = 50, with time step 0.01. Plots of the resulting predator
and prey populations are shown in Figure 1.1. As seen in the plots, both
populations exhibit a periodic pattern in time, although the periods are out
of phase. In other words, there is a time lag between the peaks and troughs
of the two solutions. Oscillating trends in the population of predator and
prey species have been observed by ecologists in real-world situations (cite
an appropriate reference).

Code listing for solving the predator and prey model by the Euler method
is shown in listing 1.1.

import matp lo t l i b . pyplot as p l t

de f Euler (f s , x0 , y0s , dt) :

n = len (y0s)

f o r i in range (n) :

y0s [i] = y0s [i] + f s [i] (x0 , y0s) ∗dt
return y0s

de f sys ode (f s , t0 , y0s , dt , tn) :

X = []

Y = []

2.1. PREDATOR AND PREY MODEL 5

0 10 20 30 40 50
t

0

50

100

150

200

250

300
Pr
ed

at
or
-P
re
y

Figure 2.1: Predator (blue) and prey (red) dynamics

T = []

nt = in t ((tn−t0) /dt)
f o r i in range (nt) :

y0s = Euler (f s , t0 , y0s , dt)

t0 = t0 + dt

X. append (y0s [0])

Y. append (y0s [1])

T. append (t0)

re turn T, X, Y

i f name == ’ ma in ’ :

k1 = 0 .5

k2 = 0.02

k3 = 0.004

k4 = 0 .4

dt = 0.01

tn = 50

t0 = 0

6CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

x0 = 20

y0 = 40

f s = [lambda x , ys : k1∗ys [0] − k2∗ys [0] ∗ ys [1] ,
lambda x , ys : k3∗ys [1] ∗ ys [0] − k4∗ys [1]]

T, X, Y = sys ode (f s , t0 , [x0 , y0] , dt , tn)

p l t . p l o t (T,X, ’ r− ’ , l i n ew id th=2)

p l t . p l o t (T,Y, ’b− ’ , l i n ew id th=2)

p l t . x l ab e l (’ t ’)

p l t . y l ab e l (’ Predator−Prey ’)

p l t . show ()

Listing 2.1: Euler method for solving predator-prey model

2.1. PREDATOR AND PREY MODEL 7

We used the Euler method in this illustration because it makes the nu-
merical solution process clear and easy to understand. However, a key draw-
back of this method is its low order of accuracy, which translates to smaller
time-steps for attaining any specified level of accuracy. In practice, ordinary
differential equation models of this type are typically solved using higher
accuracy methods, such as the family of Runge-Kutta methods.

To implement more general numerical methods, it is convenient to rewrite
our system of differential equations in vector form. Accordingly, equations
(1.1-1.2) can be written as

du

dt
= f(u, t) (2.3)

where u = [x, y]T is a vector function of the unknowns, and f denotes the
vector of right hand sides, which will be a function u and t in general. In
our predator-prey model, we have

f =

[
k1x− k2xy
k3xy − k4y

]
(2.4)

Here the explicit dependence of f is only on u. Such systems, where the
dependence of the right hand side on t is implicit, are known as autonomous
differential equations. To complete the model, the initial conditions are also
written in vector form: u0 = [x0, y0]

T .
In this vector framework, a general step of the Euler method for solving

the system is given by
un+1 = un + f(un) ∆t (2.5)

One of the most widely used higher-order methods for solving such systems
is the classic four stage, fourth-order Runge-Kutta method, described by the
following general step

un+1 = un + (r1 + 2r2 + 2r3 + r4)
∆t

6
(2.6)

where

r1 = f(un, tn)

r2 = f(un + 0.5∆t r1, tn + 0.5∆t)

r3 = f(un + 0.5∆t r2, tn + 0.5∆t) (2.7)

r4 = f(un + ∆t r3, tn + ∆t)

8CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

Written in this from, the method is relatively straightforward to implement
in Python. The code for doing this is shown in listing 1.2.

Let us now take a closer look at the results we get from the predator-
prey model. Since x and y are both functions of t, it is possible to sketch a
graph of y versus x where the dependence on t is implicit, as shown in Figure
1.2. This is known as a phase plot, and the x-y plane a phase plane (or,
phase space). An insight we get from the phase plot is that the predator and
prey populations exhibit a kind of periodic stability known as limit cycle.
The solution trajectory traces out a unique closed loop that it follows for all
time. The trajectory shape is circular, and appears to be centered around a
point in the interior. This point is actually an equilibrium point. In other
words, the (x, y) values at that point produce a zero vector on the right hand
side of equation (1.3). Thus, the time derivatives of x and y are both zero
at the equilibrium point.

import numpy as np

import matp lo t l i b . pyplot as p l t

de f Runge Kutta (f , t0 , y0s , dt) :

n = len (y0s)

k1s = [f s [i] (t0 , y0s) f o r i in range (n)]

yt s = [y0s [i] + 0 .5∗ dt∗k1s [i] f o r i in range (n)]

k2s = [f s [i] (t0 + 0 .5∗ dt , yt s) f o r i in range (n)]

yt s = [y0s [i] + 0 .5∗ dt∗k2s [i] f o r i in range (n)]

k3s = [f s [i] (t0 + 0 .5∗ dt , yt s) f o r i in range (n)]

yt s = [y0s [i] + dt∗k3s [i] f o r i in range (n)]

k4s = [f s [i] (t0 + dt , yts) f o r i in range (n)]

r e turn [y0s [i] + (k1s [i] + 2∗ k2s [i] + 2∗ k3s [i] + k4s [i]) ∗dt /6
f o r i in range (n)]

de f sy s ode (f s , t0 , y0s , dt , tn) :

t =[]

y1s =[]

y2s =[]

f o r i in range (i n t ((tn−t0) /dt)) :
y0s = Runge Kutta (f s , t0 , y0s , dt)

y1s . append (y0s [0])

y2s . append (y0s [1])

2.1. PREDATOR AND PREY MODEL 9

t . append (t0)

t0 = t0 + dt

return y1s , y2s

i f name == ’ ma in ’ :

f s = [

lambda t , ys : 0 .5∗ ys [0] − 0 .02∗ ys [0] ∗ ys [1] ,
lambda t , ys : 0 .004∗ ys [0] ∗ ys [1] − 0 .4∗ ys [1]

]

y1 , y2 = sys ode (f s , 0 , [2 0 , 4 0] , 0 . 01 , 50)

p l t . p l o t (y1 , y2)

p l t . x l ab e l (”prey”)

p l t . y l ab e l (” predator ”)

p l t . show ()

Listing 2.2: Runge-Kutta method for solving predator-prey model

50 100 150 200 250 300
prey

10

20

30

40

50

60

70

pr
ed

at
or

Figure 2.2: Phase plane of predator and prey model

10CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

import numpy as np

import matp lo t l i b . pyplot as p l t

de f f (Y, t , k1 , k2 , k3 , k4) :

x , y = Y

x = k1∗x−k2∗x∗y
y = k3∗x∗y−k4∗y
return x , y

i f name == ’ ma in ’ :

k1 = 0 .5

k2 = 0.02

k3 = 0.004

k4 = 0 .4

y1 = np . l i n s p a c e (0 ,350 , 30)

y2 = np . l i n s p a c e (0 , 70 , 30)

Y1 , Y2 = np . meshgrid (y1 , y2)

t = 0

u , v = np . z e ro s (Y1 . shape) , np . z e r o s (Y2 . shape)

NI , NJ = Y1 . shape

f o r i in range (NI) :

f o r j in range (NJ) :

x = Y1 [i , j]

y = Y2 [i , j]

yprime = f ([x , y] , t , k1 , k2 , k3 , k4)

u [i , j] = yprime [0]

v [i , j] = yprime [1]

p l t . qu iver (Y1 , Y2 , u , v , c o l o r=’b ’)

p l t . x l ab e l (’ Prey ’)

p l t . y l ab e l (’ Predator ’)

p l t . show ()

Listing 2.3: Vector field plot of predator and prey population

2.1. PREDATOR AND PREY MODEL 11

0 50 100 150 200 250 300 350
Prey

0

10

20

30

40

50

60

70
Pr
ed

at
or

Figure 2.3: Vector field plot of predator and prey population

To find the equilibrium points of the system (1.3), we set the time deriva-
tives of x and y to zero and solve for all the (x, y) pairs that satisfy the
resulting equations

k1x− k2xy = 0 (2.8)

k3xy − k4y = 0 (2.9)

Thus, the system of ordinary differential equations reduces to a system of
nonlinear algebraic equations that can be solved numerically by various meth-
ods including, for instance, the Newton method. It is easy to see in the above
system (x, y) = (0, 0) is one solution. This is the trivial solution and has no
practically useful meaning in our current application context. Other solutions
of (1.8-1.9) are straightforward to find algebraically, since the equations are
relatively simple. But for the sake of treating more general cases, we will
solve the system numerically by calling sympy package in Python, where the
code is shown in listing 1.4. Using this code, we find there is another equi-
librium point at (x, y) = (100, 25). This implies the limit cycle has a center
at (x, y) = (100, 25) when k1, ...k4 are fixed at the values given earlier. When
the initial conditions change, the size and shape of the limit cycle change,
but the trajectory remains centered around the same equilibrium point.

12CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

0 50 100 150 200 250 300 350
Prey

0

10

20

30

40

50

60

70

Pr
ed

at
or

Figure 2.4: Vector field plot and limit cycle of predator-prey model

import sympy as sym

x , y= sym . symbols (’ x , y ’)

k1 = 0 .5

k2 = 0.02

k3 = 0.004

k4 = 0 .4

eq1 = k1∗x−k2∗x∗y
eq2 = k3∗x∗y−k4∗y
eqs = sym . s o l v e ([eq1 , eq2] , [x , y]) [1]

p r i n t (’ x = %d , y = %d ’ %(eqs [0] , eqs [1]))

Listing 2.4: Solve the system of algebraic equations by Sympy package

Exercise

2.2. LORENZ SYSTEM 13

– Set k1 = 0.5, k2 = 0.02, k3 = 0.004, and k4 = 0.4, change the initial
conditions and then investigate the size of limit cycle.

– Change each value of parameters k1, ..., k4. Does the system has peri-
odically stable ?

2.2 Lorenz system

Nonlinear differential equation systems can exhibit a fascinating and rich
range of solution properties, even in low dimensional problems with relatively
simple nonlinearities. An example of this is the Lorenz model, which exhibits
chaotic behavior for certain choices of model parameters. Lorenz originally
developed the model to study convection processes in the atmosphere, with
the goal of studying weather-related phenomena. The model consists of the
following system of three ordinary differential equations

dx

dt
= σ(y − x) , (2.10)

dy

dt
= x(ρ− z)− y , (2.11)

dz

dt
= xy − βz . (2.12)

(2.13)

This system represents a two-dimensional fluid layer with a temperature
difference between the top and the bottom. The equations describe the rate
of change of three quantities with respect to time, where x(t) is the speed of
rotation of the convection cell, y(t) is the horizontal temperature, and z(t)
is the vertical temperature in two dimensional space. The system has been
non-dimensionalized in such a way that the coefficients represent certain well-
known constants in fluid mechanics: σ, ρ , and β are the Prandtl number,
Rayleigh number, and the physical dimensions of the fluid layer.

Lorenz noticed some extremely unusual solution behaviors in this model.
For instance, a solution trajectory that was initially calculated with six deci-
mal places of accuracy was recomputed using three decimal places, as a check.
But the two computations produced completely different trajectories! This
led to the discovery of a major attribute of chaotic dynamical systems: sensi-
tive dependence on initial conditions: very small changes in initial conditions

14CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

can make very large differences in long-term behavior. This phenomenon has
often been dubbed the “butterfly effect,” suggesting that if a butterfly flaps
its wings in some far-away land, it could cause a tornado locally, due to long-
term effects of the small local change in atmospheric conditions caused by
the butterfly!

One set of parameter values that produces this effect, and that has been
widely studied, is σ = 10, ρ = 28 and β = 8/3. If the system is solved with
these parameter values, and we plot x, y and z in three dimensional phase
space, the solution trajectory shows a chaotic pattern, which also happens
to resemble a butterfly, as seen in Figure 1.5. Here we have set the initial
condition to be x = 0, y = 1 and z = 2. The Python code for solving the
system using the Euler method is shown in listing 1.5 (from matplotlib.

org).

x

−20−15−10−505101520
y−20 −10 0 10 20 30

z

10
20
30
40
50

Lorenz Attractor

Figure 2.5: Butterfly effect from Lorenz system

2.2. LORENZ SYSTEM 15

import numpy as np

import matp lo t l i b . pyplot as p l t

from mp l t o o l k i t s . mplot3d import Axes3D

def l o r en z (x , y , z , s=10, r=28, b=2.667) :

x dot = s ∗(y − x)

y dot = r ∗x − y − x∗z
z dot = x∗y − b∗z
re turn x dot , y dot , z dot

dt = 0.01

num steps = 5000

xs = np . empty (num steps + 1)

ys = np . empty (num steps + 1)

zs = np . empty (num steps + 1)

xs [0] , ys [0] , z s [0] = (0 , 1 , 2)

f o r i in range (num steps) :

x dot , y dot , z dot = lo r enz (xs [i] , ys [i] , z s [i])

xs [i + 1] = xs [i] + (x dot ∗ dt)

ys [i + 1] = ys [i] + (y dot ∗ dt)

zs [i + 1] = zs [i] + (z dot ∗ dt)

f i g = p l t . f i g u r e ()

ax = p l t . axes (p r o j e c t i o n=’ 3d ’)

ax . p l o t (xs , ys , z s)

ax . s e t x l a b e l (’ x ’)

ax . s e t y l a b e l (’ y ’)

ax . s e t z l a b e l (’ z ’)

ax . v i ew i n i t (30 , −15)
ax . s e t t i t l e (”Lorenz Att ractor ”)

p l t . s a v e f i g (’ Lorenz . eps ’ , bbox inches=’ t i g h t ’)

16CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

p l t . show ()

Listing 2.5: Lorenz system solved by the Euler method

The Lorenz system is deterministic, which means that if you know the
exact initial conditions, the rest of the solution is completely and uniquely
determined by the differential equation system. As we pointed out earlier,
Lorenz demonstrated that even the slightest change in the initial conditions
causes dramatic changes in the long-term solution dynamics. Such solution
behavior is called “chaotic,” and is often seen in weather prediction models.

Returning to Figure 1.5, observe that the two “wings” of the butterfly
correspond to two different sets of physical behavior of the system. Solution
trajectories typically loop arond one wing a few times before switching to
the other wing, and then continue this back and forth pattern in a seemingly
random fashion.

Exercise

– Try to change the initial conditions and investigate the chaotic behav-
ior.

– Discuss why we call the Lorenz system as chaos.

– Try to explain the physical meaning of x, y and z over time.

– What is the attractor ?

– Why do we have to set the parameters as σ = 10, ρ = 28 and β = 8/3
?

2.3 SIR epidemic model

Differential equation systems have been widely used for modeling the spread
of infectious diseases, and to study the effect of various treatment and con-
trol mechanisms. One of the most well-known of these is the SIR model
[Kermack and McKendrick, 1927], also known as the epidemic model. It
consists of a system of three differential equations that describe the spread
of a disease in a fixed population of interest. The modeling strategy con-
sists of splitting the given population of size N , say, into three separate,

2.3. SIR EPIDEMIC MODEL 17

non-overlapping “compartments,” whose sizes vary with time as the disease
spreads through the population. Each compartment consists of a certain
number of individuals who share some common attribute, as follows: S(t) is
the number of individuals who are susceptible, but not yet infected; I(t) is
the number of infectious individuals, and R(t) is number of recovered indi-
viduals, who are assumed to be immune from the disease. It is also assumed
that N is a constant, and that S(t) + I(t) +R(t) = N .

The system of differential equations describing the evolution of (S, I, R)
over time is expressed by

dS

dt
= −βSI

N
dI

dt
= β

SI

N
− γI (2.14)

dR

dt
= γI

The SIR model describes the change in each compartment over time, with
β being the contact rate of the disease and γ the mean recovery rate. The
model is complete once we specify initial conditions for the variables S, I, R.

To illustrate the behavior of this model, we choose the initial conditions
S(0) = 999, I(0) = 1 and R(0) = 0, with parameter values γ = 0.1 (??please
include units) and β = 0.2 (??please include units). Thus, the total
popultion is N = S + I + R = 1000. Figure 1.6 shows numerical simulation
results for a time period of 160 days.

It is useful to observe the following features in the solution, most of which
also seem intuitively reasonable:

• The number of susceptibles decreases rapidly in the early stages as they
become infected, and S(t) is a decreasing function.

• The infected population increases to some maximum value, and then
decreases, until it asymptotes zero at some later stage.

• The recovered population increases until there is no infected person in
the system.

The Python code for solving the SIR model is shown in listing 1.6. Here
we integrate the system of ODEs by calling the built-in function ’odeint’
in scipy package. This code was downloaded from scipython.com/book/

chapter-8-scipy/additional-examples/the-sir-epidemic-model/.

18CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

0 20 40 60 80 100 120 140 160
Time (days)

0

200

400

600

800

1000

Po
pu

la
tio

n
(p

er
so

n)
Susceptible
Infected
Recovered

Figure 2.6: The results of SIR model over 160 days

import numpy as np

from sc ipy . i n t e g r a t e import ode int

import matp lo t l i b . pyplot as p l t

Total populat ion , N.

N = 1000

I n i t i a l number o f i n f e c t e d and recovered i nd i v i d u a l s .

I0 , R0 = 1 , 0

Assume S + I + R = N

S0 = N − I0 − R0

beta i s i n f e c t i o n rate , gamma i s recovery rate , (un i t 1/days) .

beta = 0 .2

gamma = 0.1

D i s c r e t i z e time 160 days

2.3. SIR EPIDEMIC MODEL 19

t = np . l i n s p a c e (0 , 160 , 160)

Def ine SIR model .

de f de r i v (y , t , N, beta , gamma) :

S , I , R = y

dSdt = −beta ∗S∗ I / N

dIdt = beta ∗S∗ I / N − gamma∗ I
dRdt = gamma∗ I
r e turn dSdt , dIdt , dRdt

Set I n i t i a l va lue s in term o f vec to r

y0 = S0 , I0 , R0

In t eg r a t e the ODE system us ing b u i l t i n ode int

r e s u l t = ode int (der iv , y0 , t , a rgs=(N, beta , gamma))

Get the numerica l r e s u l t s over time

S , I , R = r e s u l t .T

V i sua l i z a t i o n

p l t . p l o t (t , S , ’b ’ , alpha =0.5 , lw=3, l a b e l=’ Su s c ep t i b l e ’)

p l t . p l o t (t , I , ’ r ’ , alpha =0.5 , lw=3, l a b e l=’ I n f e c t ed ’)

p l t . p l o t (t , R, ’ g ’ , alpha =0.5 , lw=3, l a b e l=’ Recovered ’)

p l t . x l ab e l (’Time (days) ’)

p l t . y l ab e l (’ Populat ion (person) ’)

p l t . yl im (0 ,1000)

legend = p l t . l egend ()

legend . get f rame () . s e t a l pha (0 . 8)

p l t . s a v e f i g (’ SIR . eps ’ , bbox inches=’ t i g h t ’)

p l t . show ()

Listing 2.6: SIR model solved by scipy package

Exercise

– Change the parameters and investigate the S, I and R over time, in-
terpret the results.

20CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

– Change the initial condition, interpret the results, and investigate equi-
librium solutions.

– Identify the main assumptions of this model. Describe the situations
that this model cannot be applied.

– Plot the trajectory of S, I and R in the three dimensional space and
investigate the dynamics approaching the equilibrium point.

2.4 Time delay epidemic model for COVID-

19

The coronavirus pandemic of 2020, caused by the COVID-19 respiratory
virus, brought the entire world to a near standstill, and wreaked enormous
damage worldwide. Although many studies have been carried out to under-
stand the virus propagation mechanisms and post-infection prognosis (see
[Anderson and May, 1979], [Diekmann and Heesterbeek, 2000] and [Xu and Ma, 2009]),
many uncertainties and open questions remain.

Understanding the propagation mechanism is a very important issue in
the control of the global spread of COVID-19 and other similar pathogens
in the future. Mathematical modelling is an important tool for understand-
ing the transmission mechanism. To quantify the spread of the virus, a
dimensionless constant called the basic reproduction number R∗ is usually
estimated to predict the number of new infections caused by each currently
infected individual. For example, R∗ ≈ 3 − 4 for influenza, but it is much
larger for measles, with R∗ ≈ 16 − 18 (see [Keeling and Rohani, 2008] and
[Anderson and May, 1998]). However, the value of R∗ for COVID-19 is un-
clear. In this section, we will apply the standard SIR model [Kermack and McKendrick, 1927]
to estimate R∗ for COVID-19. We will also describe an extension of the SIR
model with two-time delays for infected individuals, in order to obtain the
best fit to the actual data, using Monte Carlo Simulation. The transmission
and recovery rates will be approximated and a time delay effect will be de-
veloped. Finally, we will define the infected ratio, and use it as an aid to
monitoring and controling of the spread of the virus.

2.4. TIME DELAY EPIDEMIC MODEL FOR COVID-19 21

2.4.1 Basic epidemic models

The SIR system of differential equations introduced earlier is among the most
commonly used epidemic models. We will now use it to model the spread of
COVID-19. The model consists of the system of equations (1.15), repeated
below for convenience

dS

dt
= −βSI (2.15)

dI

dt
= βSI − γI (2.16)

dR

dt
= γI (2.17)

As before, S(t) denotes the number of susceptible individuals, I(t) is the
number of infectious individuals, andR(t) is number of recovered individuals.
We retain the assumption of a constant population size N , with S(t)+I(t)+
R(t) = N . The following additional assumptions are made to build the
mathematical model

• The populations of susceptible individuals and contagious infectives
are very large, so that random differences between individuals can be
neglected.

• There are no natural births and deaths in this model. The disease is
spread by contact from individual to individual.

• Individuals who recover from the disease have immunity.

• The population system is closed with no migration.

We note that the model equations (1.15)-(1.17) have been written in
dimensionless form, where each population variable is divided by N .

The epidemic model described by the differential equations (1.15)-(1.17)
has been extensively studied from various viewpoints (see [Kermack and McKendrick, 1927]).
A key feature – and limitation – of this model is that it uses positive constants
(β and γ) to model the mean infection and recovery rates. In a real-world
situation the infection and recovery rates may vary considerably with time,
and it may not work well to use a constant mean value for them. One way

22CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

to incorporate the time-dependent behavior while preserving most other fea-
tures of the model is by augmenting the mean infection and recovery rate
constants with a time- delay effect.

For the case of COVID-19, we will now develop a more general epidemic
model which includes the time delay effect for both infected and recovered
individuals. One way to interpret this effect is that susceptible individuals
are not immediately infected when they come in contact with infected indi-
viduals. Instead there is a time-delay period of disease incubation. Similarly,
infected individuals do not immediately start recovering, and transitioning
into the population of the recovered individuals. The resulting SIR model,
generalized with time delay effects, is then given by the following system

dS

dt
= −βSI(t− d1) (2.18)

dI

dt
= βSI(t− d1)− γI(t− d2) (2.19)

dR

dt
= γI(t− d2) (2.20)

where d1 and d2 are constants that represent the effects of time delay for the
infective and recovered individuals, respectively.

2.4.2 Simulation results

We show the numerical results and compare them with real data collected by
the Johns Hopkins Github repository and summarized in reference [Nadu, 2020].
The case study considered is from China, since a complete data set is avail-
able for describing and fitting parameters in the present model. These data
are from January 22, 2020, to March 15, 2020. Looking at the broad trends
in the data, we can identify three distinct time stages for infective individ-
uals: the early stage where the number of cases is slowly increasing, the
middle stage of a fast increase, and the final stage where it slows again to a
steady-state.

We assume the total population size under consideration is N = 83, 000.
Based on the daily report on January 22, 2020, which is taken as the be-
ginning of the study period, the initial numbers of susceptible, infective and
recovered individuals is S0 = 82408/N , I0 = 547/N , and R0 = 45/N , re-
spectively. Figures 1.7 and 1.8 display show plots of the actual data for
susceptible, infective and recovered individuals.

2.4. TIME DELAY EPIDEMIC MODEL FOR COVID-19 23

To numerically approximate the parameters β and γ in the standard SIR
model in (1.15)-(1.17), we use Monte Carlo simulation with 1,000 random
iterative steps. The system of ODEs is integrated using the ddeint package
[Zulko, 2019]. Two sets of uniformly distributed random numbers are gener-
ated to assign initial guesses for the values of β and γ, and we also specify
that 0.1 < β < 0.6, and 0.02 < γ < 0.08. The optimal values are obtained by
minimizing the percentage of the root mean square error (RMSE) between
the actual data and the simulation result for infected individuals over 61 days.
We find the minimum value of the RMSE is 6.438%, and the corresponding
optimal values are β = 0.345 and γ = 0.045. Plots comparing the actual
data with simulation results from the standard SIR model are shown in Fig-
ure 1.9. If the basic reproduction number R∗ is defined by βS0/γ, we obtain
R∗ = 7.61, which is considerably larger than the value for influenza, where
R∗ = 3-4 (see [Keeling and Rohani, 2008] and [Anderson and May, 1998]).

Our value of R∗ = 7.61 for COVID-19 in China turns out to be an over-
estimation. One reason for this may be that we use S0 to approximate R∗,
and this might be accurate only in the early stages. Instead of using S0,
we could define S̄ as the average number of susceptible individuals over the
simulated period. With this approach, we get S̄ = 0.1587, and thus R∗ ≈
βS̄/γ = 2.151. This value is likely an under-estimate, since the simulation
result in Figure 1.9 does not fit well with the actual data.

To obtain a better fit than the standard SIR model, we will next try
using the time delay SIR variant given in equations (1.18)-(1.20). Recall,
d1 is the time delay effect for transitioning from susceptible to infected, and
d2 for transitioning from infected to recovered. As before, we use Monte
Carlo simulation to obtain the best fit, but now d1 and d2 are two additional
parameters which must be considered in the fit as well. So, four sets of
uniformly distributed random numbers are initially generated, to iteratively
compute the optimal values of β, γ, d1, and d2. We specify the parameter
ranges as: 1.5 ≤ β ≤ 2.3, 0.03 ≤ γ ≤ 0.08, 7 < d1 ≤ 14, and 0 < d1 ≤ 7.
After performing the simulation using 1,000 iteration steps, we obtain the
optimal values β = 1.747, γ = 0.05, d1 ≈ 12, d2 ≈ 5 with a percentage RMSE
of 4.466%. Plots comparing the actual data with results from the time delay
SIR model are shown in Figure 1.10. It can be seen that the simulation
results for both infected and recovered individuals agree well with the actual
data. However, it is interesting to compute and find the ratio βS0/γ ≈ 34.69,
which is very large and cannot possibly represent the usual basic reproduction
number. It can be shown that due to the time delay effect, we must multiply

24CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

βS0/γ by a correction factor of the form I(t − d1)/I(t − d2). Even so, it is
not entirely clear how to find the exact numerical values needed here. It may
require stability analysis at equilibrium points, or the use of next-generation
matrix methods (see [Xu and Ma, 2009]). Linear or nonlinear analysis is
beyond the scope of our present work, as our primary aim here is exposition
of modeling concepts. Since the present model can reasonably predict the
time-evolution of susceptible, infected and recovered individuals, this will
suffice until further analysis and newer developments become available in the
future.

It is interesting to take a closer look at the ratio I(t− d1)/I(t− d2) that
arises naturally in the time delay variant of the SIR model. We assume that
d1 and d2 are two integers representing a certain number of days before the
present day, t. From equation (1.19), we see that dI/dt > 0 when

βSI(t− d1)− γI(t− d2) > 0

which holds initially, at the early stage of disease spread. Furthermore, since
0 < S = S0 < 1, we have

βS0

γ

I(t− d1)
I(t− d2)

> 1

This suggests the ratioRI = I(t−d1)/I(t−d2) > 0 is a non-dimensional factor
multiplying the basic reproduction number R∗ = βS0/γ in the standard SIR
model. When the disease is spreading, I(t) is an increasing function, so
dI/dt > 0 and I(t − d1) < I(t − d2). When RI � 1 and 0 < d2 < d1, the
disease spreads rapidly. Thus, it provides an alternative indicator that shows
how fast the disease is spreading. In other words, we can use this indicator to
monitor the progress of the disease. A plot of the ratio I(t−d1)/I(t−d2) for
China during January 22, 2020 to March 15, 2020 is shown in Figure 1.11 and
reveals that China successfully controlled the spread of COVID-19 during this
period, since RI (which is actually a function of time) increases monotonically
and reaches a steady value at nearly the endemic state. Observe that RI is
approaching an asymptotic constant as t→∞.

Next, we define a new reproduction number R̄ = R̄∗R̄I where R̄∗ = βS̄/γ,
and R̄I is the average of the ratio RI . From a simulation over 49 days (61-12
days), we obtain S̄ = 0.1587 and R̄I = 0.7747, which gives R̄ = 4.2953. So,
we conclude that the basic reproduction number for the spread of COVID-19
in China is approximately 4.2953. A more precise closed form, together with

2.4. TIME DELAY EPIDEMIC MODEL FOR COVID-19 25

a better estimate of the infected ratio, is needed to derive a more accurate
reproduction number. It should be emphasized that all parameters shown
here are obtained from fitting the data from China. For other countries, all
parameters in the model need to be calibrated again, including the delay
times d1 and d2.

The Python code for solving the SIR with time delay is shown in listing
1.7-1.10.

Figure 2.7: Bar plot of actual data for infected, recovery and death people
due to COVID-19.

26CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

Figure 2.8: Bar plot of actual data for infected people due to COVID-19.

import numpy as np

import pandas as pd

import d a t e u t i l

import matp lo t l i b . pyplot as p l t

import seaborn as sns

import random

df = pd . r ead c sv (’ cov id 19 data . csv ’)

df1 = df [df [’ Country/Region ’]== ’Mainland China ’]

df1 [’ ObservationDate ’] = pd . to date t ime (df1 [’ ObservationDate ’])

df China = df1 [{ ”ObservationDate ” , ”Confirmed” , ”Deaths” , ”

Recovered” }]
df China . i s n u l l () . sum()

num death = df China [’ Deaths ’] . va lue s

num confirmed = df China [’ Confirmed ’] . va lue s

num recovered = df China [’ Recovered ’] . va lue s

2.4. TIME DELAY EPIDEMIC MODEL FOR COVID-19 27

Figure 2.9: The results of SIR model

i n f e c t d a i l y = num confirmed − num recovered − num death

df1 [’ datet ime ’] = pd . to date t ime (df China . ObservationDate)

df1 . index = df1 [’ datet ime ’]

df2 = df1 . resample (’D ’) . sum()

i n f c on = df2 [’ Confirmed ’]

i n f r e = df2 [’ Recovered ’]

i n f d ead = df2 [’ Deaths ’]

i n f = i n f c on . va lue s − i n f r e . va lue s − i n f d ead . va lue s

a c tua l c on f i rm = i n f

a c tua l r ed = i n f r e . va lue s + in f dead . va lue s

Listing 2.7: SIR with time delay model (Dataframe)

28CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

Figure 2.10: The results of SIR with time Delay model

import numpy as np

from sc ipy . i n t e g r a t e import ode int

import matp lo t l i b . pyplot as p l t

Total populat ion , N.

N = 83000

I n i t i a l number o f i n f e c t e d and recovered i nd i v i d u a l s .

I0 , R0 = 500 , 50

Assume S + I + R = N

S0 = N − I0 − R0

beta i s i n f e c t i o n rate , gamma i s recovery rate , (un i t 1/days) .

beta = 0 .3

gamma = 0.05

2.4. TIME DELAY EPIDEMIC MODEL FOR COVID-19 29

Figure 2.11: The ratio of infected people I(t − d1)/I(t − d2) over 61 days
where d1 = 12 and d2 = 5.

Di s c r e t i z e time 160 days

t = np . l i n s p a c e (0 , 54 , 55)

Def ine SIR model .

de f de r i v (y , t , N, beta , gamma) :

S , I , R = y

dSdt = −beta ∗S∗ I / N

dIdt = beta ∗S∗ I / N − gamma∗ I
dRdt = gamma∗ I
r e turn dSdt , dIdt , dRdt

Set I n i t i a l va lue s in term o f vec to r

y0 = S0 , I0 , R0

In t eg r a t e the ODE system us ing b u i l t i n ode int

r e s u l t 1 = ode int (der iv , y0 , t , a rgs=(N, beta , gamma))

Get the numerica l r e s u l t s over time

30CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

S1 , I1 , R1 = r e s u l t 1 .T

V i sua l i z a t i o n

p l t . p l o t (t , S1 , ’b ’ , alpha =0.5 , lw=3, l a b e l=’ Su s c ep t i b l e ’)

p l t . p l o t (t , I1 , ’ r ’ , alpha =0.5 , lw=3, l a b e l=’ I n f e c t ed ’)

p l t . p l o t (t , R1 , ’ g ’ , alpha =0.5 , lw=3, l a b e l=’ Recovered ’)

p l t . x l ab e l (’Time (days) ’)

p l t . y l ab e l (’ Populat ion (person) ’)

p l t . yl im (0 ,100000)

legend = p l t . l egend ()

legend . get f rame () . s e t a l pha (0 . 8)

p l t . show ()

x = range (55)

y = i n f

z = ac tua l r ed

f i g = p l t . f i g u r e ()

ax1 = f i g . add subplot (111)

ax1 . s c a t t e r (x , y , s=10, c=’b ’ , marker=” s ” , l a b e l=’ Actual I n f e c t ’

)

ax1 . p l o t (t , I1 , ’−b ’ , l a b e l=’Model I n f e c t ’)

ax1 . s c a t t e r (x , z , s=10, c=’ r ’ , marker=” s ” , l a b e l=’ Actual Recover

’)

ax1 . p l o t (t ,R1 , ’−r ’ , l a b e l=’Model Recover ’)

ax1 . s e t (x l ab e l=”Days” ,

y l ab e l=”Number o f people ” ,

t i t l e=”Corona Virus 2019 − China”)

p l t . l egend (l o c=’ upper l e f t ’) ;

p l t . show ()

2.4. TIME DELAY EPIDEMIC MODEL FOR COVID-19 31

pr in t (’R0 = ’ , beta /gamma)

Listing 2.8: SIR with time delay model

32CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

https : // pypi . org / p r o j e c t / dde int /

from pylab import array , l i n space , subp lo t s

from ddeint import dde int

from random import seed

from random import random

nstep = 10 # number s t ep s o f Monte Carlo s imu la t i on

de f model (Y, t , d1 , d2 , beta , gamma) :

x , y , z = Y(t)

xd , yd , zd = Y(t − d1)

xdd , ydd , zdd = Y(t − d2)

re turn array ([− beta ∗x∗yd , beta ∗x∗yd − gamma∗ydd , gamma∗ydd])

N = 82000

S0 = 81408

I0 = 547

R0 = 45

g = lambda t : array ([S0/N, I0 /N, R0/N])

t t = l i n s p a c e (0 , 54 , 541)

rms e i n f p e r c en t = []

beta = []

gamma = []

de lay = []

d e l ay r e = []

f o r i in range (nstep) :

va lue1 = random ()

value2 = random ()

value3 = random ()

value4 = random ()

2.4. TIME DELAY EPIDEMIC MODEL FOR COVID-19 33

#sca l ed = minv + (value ∗ (maxv − minv))

betar = 1 .7 + (value1 ∗ (2 . 4 − 1 . 7))

gammar = 0.03 + (value2 ∗ (0 . 08 − 0 . 013))

de layr = round (7 + (value3 ∗ (14 − 7)))

de l ay r e = round (1 + (value4 ∗ (7 − 1)))

yy = ddeint (model , g , tt , f a r g s=(delayr , de layre , betar , gammar

))

Ia = []

f o r j in range (0 ,55) :

i i = j ∗10
Ia . append (N∗yy [i i , 1])

rmse in f = np . sq r t (sum(np . power (np . abs (in f−Ia) , 2)) / l en (i n f))

rms e i n f p e r c en t . append ((rmse in f /N) ∗100)

beta . append (betar)

gamma. append (gammar)

de lay . append (de layr)

d e l ay r e . append (de l ay re)

index min = np . argmin (rms e i n f p e r c en t)

p r i n t (index min)

p r i n t (’Mininum beta , gamma, delay1 , de lay2 = ’ , beta [index min] ,

gamma[index min] , de lay [index min] , d e l a y r e [index min])

Fina l r e s u l t s

y f = ddeint (model , g , tt , f a r g s=(de lay [index min] , d e l a y r e [

index min] , beta [index min] , gamma[index min]))

x = range (55)

y = i n f

34CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

z = ac tua l r ed

f i g = p l t . f i g u r e ()

ax1 = f i g . add subplot (111)

ax1 . s c a t t e r (x , y , s=10, c=’b ’ , marker=” s ” , l a b e l=’ Actual I n f e c t ’

)

ax1 . p l o t (tt ,N∗ yf [: , 1] , ’−b ’ , l a b e l=’Model I n f e c t ’)

ax1 . s c a t t e r (x , z , s=10, c=’ r ’ , marker=” s ” , l a b e l=’ Actual Recover

’)

ax1 . p l o t (tt ,N∗ yf [: , 2] , ’−r ’ , l a b e l=’Model Recover ’)

ax1 . s e t (x l ab e l=”Days” ,

y l ab e l=”Number o f people ” ,

t i t l e=”Corona Virus 2019 − China”)

p l t . l egend (l o c=’ upper l e f t ’) ;

p l t . show ()

Listing 2.9: SIR with time delay model (Solve time delay)

2.4. TIME DELAY EPIDEMIC MODEL FOR COVID-19 35

import numpy as np

import matp lo t l i b . pyplot as p l t

c o l o r s = (0 . 6 , 0 . 6 , 0 . 9)

nd = len (Ia)

t s = []

Ratio = []

f o r i in range (d1 , nd) :

Ratio . append (Ia [i−d1] / Ia [i−d2])
t s . append (i)

p l t . s c a t t e r (ts , Ratio , c=co l o r s , alpha =0.8)

p l t . t i t l e (’ Plot o f I n f e c t i o n Ratio China case ’)

p l t . x l ab e l (’Days ’)

p l t . y l ab e l (’ Ratio I (t−d1) / I (t−d2) ’)
p l t . show ()

Listing 2.10: SIR with time delay model (Plot infected ratio)

36CHAPTER 2. SYSTEMS OF ORDINARYDIFFERENTIAL EQUATIONS

Bibliography

[Anderson and May, 1979] Anderson, R. M. and May, R. M. (1979). Popu-
lation biology of infectious diseases: part i. Nature, 280:361–367.

[Anderson and May, 1998] Anderson, R. M. and May, R. M. (1998). Infec-
tious diseases of humans: Dynamics and control. Oxford University Press.

[Diekmann and Heesterbeek, 2000] Diekmann, O. and Heesterbeek, J. A. P.
(2000). Mathematical epidemiology of infectious disease. John Wiley and
Sons UK.

[Giordano et al., 2003] Giordano, F. R., Weir, M. D., and Fox, W. P. (2003).
A first course in mathematical modeling, 3th edition.

[Keeling and Rohani, 2008] Keeling, M. J. and Rohani, P. (2008). Modelling
infectious diseases in humans and animals. Princeton University Press.

[Kermack and McKendrick, 1927] Kermack, W. and McKendrick, A. (1927).
A contribution to the mathematical theory of epidemics. Proceedin of the
Royal Society. A, 115:700–721.

[Nadu, 2020] Nadu, C. T. (2020). Novel corona virus 2019
dataset. https://www.kaggle.com/sudalairajkumar/

novel-corona-virus-2019-dataset.

[Xu and Ma, 2009] Xu, R. and Ma, Z. (2009). Stability of a delayed sirs
epidemic model with a nonlinear incidece rate. Chaos, Soliton and Fractals,
41:2319–2325.

[Zulko, 2019] Zulko (2019). Scipy-based delay differential equation (dde)
solver. https://pypi.org/project/ddeint.

37

