Test 3 practice worksheet

1. State the Mean Value Theorem in mathematically precise language, followed by a brief explanation of what it means in everyday language. Include a graph, with labels, to illustrate your claims.
2. State the mathematical definition of the definite integral of a function f.
3. Give a mathematically precise statement of both parts of the Fundamental Theorem of Calculus. Explain why the theorem is considered significant, or "fundamental."
4. Compute using the evaluation theorem: $\int_{\pi}^{2 \pi}\left(\frac{1-6 x+3 x \cos x}{3 x}\right) d x$
5. Indicate true or false and justify your answer. If you say "True" give reason(s).

If you say "False" give an example in which the statement doesn't hold - you may give your example in the form of a clearly-labeled graph.
(a) If $f(x)$ has a local minimum value at $x=c$, then it is necessary that $f^{\prime}(c)=0$ or $f^{\prime}(c)=$ undefined.
(b) If a function is continuous on a closed interval, then it is guaranteed to attain local minimum and maximum values on that interval.
(c) If $f(x) \leq g(x)$ on the interval $[a, b]$, then it is necessary that $f^{\prime}(x) \leq g^{\prime}(x)$ on that interval.
(d) If $f(x) \leq g(x)$ on the interval $[a, b]$, then it is necessary that $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$ on that interval.
6. A particle moves back and forth along a straight line. Its velocity (in meters per second) at time t (seconds) is given by the function $v(t)=2 t^{2}+2 t-12$. Find the total distance traveled by the particle during the interval $0 \leq t \leq 4$.
7. Evaluate the following limits: $\lim _{x \rightarrow-\infty} \frac{1-e^{x}}{1+e^{x}}$ and $\lim _{x \rightarrow \infty} \frac{1-e^{x}}{1+e^{x}}$.

Show solution steps and reasons.
8. Find the absolute minimum and maximum values of the function $y=\frac{3-x^{2}}{e^{x}}$ on the interval $[-2,0]$.
9. Find the linear approximation of $g(t)=\sqrt[3]{t^{2}-1}$ at $t=3$ and use it to approximate $\sqrt[3]{2.9}$ and $\sqrt[3]{3.05}$.
10. Find $d y / d x$ for each the following:
(a) $y=\frac{1}{x \ln x}$
(c) $y=\int_{x}^{2} \sqrt{3+5 t^{2}} d t$
(b) $y=(1+2 x)^{1 / x}$
(d) $y=\int_{x}^{e^{x}} \sqrt{3+5 t^{2}} d t$
11. Let V be the volume of a cylinder having height h and radius r, where both h and r vary with time. When the height is 6 in . and is increasing at $0.2 \mathrm{in} . / \mathrm{sec}$., the radius is 4 in . and is decreasing at $0.1 \mathrm{in} . / \mathrm{sec}$. Find the rate at which the volume is changing, and determine whether it is increasing or decreasing at that instant.
12. A piece of wire 20 ft long is to be cut into two pieces. One piece is to be bent into an equilateral triangle, and the other into a circle. Determine the length of each piece so that the sum of the areas is maximized.
13. Suppose $v(t)$ is the velocity (in meters per second) of an object moving back and forth along a straight line. What physical meaning is associated with each of the following
(a) $\int_{1}^{5} v(t) d t$
(c) $\frac{1}{5-1} \int_{1}^{5} v(t) d t$
(b) $\int_{1}^{5}|v(t)| d t$
(d) $v^{\prime}(t)$
14. Let $g(x)=\int_{-1}^{x} f(t) d t$, where the graph of f is shown below.

(a) Determine the sign of $g(-2), g(1)$ and $g(5)$ [positive or negative]. Explain your reasoning.
(b) Find the value of $g(3)$ and $g^{\prime}(3)$. Give reasons.
(c) On $-4<x<9$ on what interval(s) is $g(x)$ increasing, and on what interval(s) is it decreasing?
(d) On $-4 \leq x \leq 9$ at what x-values does $g(x)$ have absolute minimum and maximum values? Why?
15. Find the most general antiderivative of the following functions:
(a) $y=\frac{x^{2}-\sqrt{x} e^{x}}{\sqrt{x}}$
(c) $f(x)=\left(2 x-\frac{1}{\sqrt{x}}\right)\left(1+\frac{1}{\sqrt{x}}\right)$
(b) $g(x)=2 \cos x+\frac{1}{4 x}$
(d) $h(x)=\frac{4}{1+x^{2}}-3 x^{2}$

