Student name:

MATH 180: Calculus A
Spring 2022

Test 3

May 10, 2022

Instructions:

- This is a regular "closed-book" test, and is to be taken without the use of notes, books, or other reference materials. Collaboration or group work is not permitted.
- Cell-phone usage in any form is prohibited for the entire duration of the test. This also applies to any restroom breaks taken during the test.
- Answer all questions on separate paper (not on this sheet!).
- Solve all problems using algebra, except if specifically indicated otherwise.

Show all solution steps, give reasons, and simplify your answer to receive full credit.

- The time limit for taking this test is 80 minutes from the scheduled start time.
- This test adds up to 50 points. It contains questions numbered (1) through (7).
(1) $\left[6\right.$ pts.] Consider the Riemann sum $R_{n}=\sum_{i=1}^{n}\left[\ln \left(1+\frac{4 i}{n}\right)-2\right] \frac{4}{n}$.
(a) As you know, this approximates a definite integral of the form $\int_{a}^{b} f(x) d x$. Find $f(x), a$ and b. Show steps and reasons.
(b) Compute the numerical value of R_{4}.
(2) [6 pts] A piece of wire 20 ft long is to be cut into two pieces. One piece is to be bent into a square, and the other into a circle. Determine the length of each piece so that the sum of the areas is maximized.
(3) $[6 \mathrm{pts}]$ Let $y=e^{x|x-2|}$. Find the intervals on which y is increasing, and on which it is decreasing, together with its local extreme values. Credit for correct steps only!
(4) [6 pts.] The graph of $y=f(x)$ shown here consists of line segments and semicircles. Use it to evaluate the following definite integrals by interpreting each in terms of an exact area:
(a) $\int_{0}^{6} f(x) d x$
(b) $\int_{0}^{14} f(x) d x$
* In case you're blanking out on it,
 area of a semicircle $=\pi r^{2} / 2$, area of a $\Delta=\frac{1}{2}$ base \times height, area of a square $=\operatorname{side}^{2}$, area of a rectangle $=$ width \times height.

Page 1 of 2
(5) [6 pts. $\times 2]$ Differentiate with respect to x and simplify, showing needed steps and justification:
(a) $y=\frac{(2 x+1)^{3}}{x^{5} \sqrt{x+1}}$
(b) $\quad f(x)=x \sin ^{-1}\left(\frac{x}{2}\right)+\sqrt{4-x^{2}}$

Hint: A complete solution to (a) with almost no algebraic mess can be done in 4 lines!
(6) [4 pts.] State the Mean Value Theorem in mathematically precise language, followed by a brief explanation of what it means in everyday language. Include a graph, with labels, to illustrate your claims.
(7) $[2.5 \mathrm{pts} . \times 4]$ Give short answers to each of the following as instructed:
(a) Carry out one iteration of Newton's method to find the root of $x^{3}-x=2$ starting from the initial guess $x=1$.
(b) The area of a square is increasing at a constant rate (with respect to time). Is the side-length increasing at:
(i) a constant rate?
(ii) an increasing rate?
(iii) a decreasing rate?

Give a solid, calculus-based justification for your answer.
(c) Sketch the graph of a function on a closed interval that has no absolute extremes, but does have a critical point. Be sure to include axis labels.
(d) Let $L(x)$ denote the linear approximation of a function $f(x)$ at $x=a$. You, of course, know that $L(x)=f(a)+f^{\prime}(a)(x-a)$. Let $E(x)=f(x)-L(x)$ denote the error in the linear approximation. What is

$$
\lim _{x \rightarrow a} \frac{E(x)}{x-a}
$$

Hint: Plugin $f(x)$ and $L(x)$ into $E(x)$ and evaluate the limit using any standard method - e.g., algebraic simplification, or other ways ...

Spring 2022: Calculus A: Test 3 Solutions b
[1] The general form of a right Reimann sam for $\int_{a}^{b} f(x) d x$
(a) is

$$
R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \text {, where } \Delta x=\frac{b-a}{n}, x_{i}=a+i \Delta x
$$ comparing this with the given form of R_{n}, we can see that $f\left(x_{i}\right)=\ln \left(1+\frac{4 i}{n}\right)-2$ and $\Delta x=\frac{4}{n}$

From this we can dedcece that $x_{i}=1+\frac{4 i}{n}$, and $a=1 ; b=5$. Therefore, $f(x)=\ln (x)-2, a=1, b=5$. The given Reimann sum approximates $\int_{1}^{5}[\ln x-2] d x$
NOTE: Another correct answer that represents this same integral is $\int_{0}^{1}[\ln (x+1)-2] d x$
(b)

$$
\begin{aligned}
&\left.R_{4}=\sum_{i=1}^{4}[\ln (1+i)-2] \cdot 1=[\ln (2)-2]+[\ln (3)-2)\right]+[\ln (4)-2]+[\ln (5)-2] \\
&=\ln (2 \times 3 \times 4 \times 5)-8 \\
&=\ln (120)-8
\end{aligned}
$$

[2]
Let $x=$ side length of square (in feet)

$$
r=\text { radius of circle (feet) }
$$

Total area $=x^{2}+\pi r^{2}$
since the total length is $20^{\prime} ; 4 x+2 \pi r=20 \Rightarrow r=\frac{20-4 x}{2 \pi}$

$$
\begin{aligned}
\therefore A(x) & =x^{2}+\pi\left[\frac{10-2 x}{\pi}\right]^{2} \\
A(x) & =x^{2}+\frac{1}{\pi}\left(100-40 x+4 x^{2}\right)
\end{aligned}
$$

To maximize A, find its critical points first..

$$
\begin{aligned}
& \text { To maximize } A \text {, find its vitae } \\
& A^{\prime}(x)=2 x+\frac{1}{\pi}(-40+8 x)=\left(2+\frac{8}{\pi}\right) x-\frac{40}{\pi} \Rightarrow x=\frac{40 / \pi}{(2+8 / \pi)}
\end{aligned}
$$

Simplifying a bit, we get $x=\frac{40}{2 \pi+8}=\frac{20}{\pi+4}$
The nine mum and maxumin possible values of x are 0 and $\frac{20}{4}=5$. To find abs maxumuin of $A(x)$:
The area is masiumzed when $x=0$.
Ansucer: The maximum area is obtained when the entire wire is used to make the circle.

$$
\begin{array}{r|r}
0 & A(0)=\frac{100}{\pi} \\
5 & A(5)=25 \\
\frac{20}{8+4} & A\left(\frac{20}{\pi+4}\right)=14
\end{array}
$$

[3] $\quad y=e^{x|x-2|}$
To find intervals of increase f decrease I'll use a sign graph of y^{\prime}. Accorderigly,

$$
\begin{aligned}
& \text { h of } y^{\prime} \text { Accordingly, } \\
& y=\left\{\begin{array}{l}
e^{x^{2}-2 x,}, \text { if } x \geq 2 \\
e^{-x^{2}+2 x,}, \text { if } x<2
\end{array} \Rightarrow y^{\prime}=\left\{\begin{array}{l}
(2 x-2) e^{x^{2}-2 x}, \text { if } x>2 \\
(-2 x+2) e^{-x^{2}+2 x^{2},}, \text { if } x<2 \\
D N E, \text { if } x=2
\end{array}\right.\right.
\end{aligned}
$$

$y^{\prime}=0$ when $x=1$ and $y^{\prime}=D W E$ when $x=2$.
Thins, there are two critical pones, $x=1$ and $x=2$
when $x>2: y^{\prime}=2 x-2>0$
when $1<x<2: y^{\prime}=-2 x+2<0$
when $x<1: y^{\prime}=-2 x+2>0$

Answers: y is increasing on $(-\infty, 1)$ and (z, ∞)
y is decreasing on $(1,2)$
There is one local maximum $@(1, e)$
There is one local minimum e $(2,1)$
[4]
(a)

$$
\begin{aligned}
& \int_{0}^{6} f(x) d x=\text { Area (I) }+ \text { Area (II) } \\
& \text { (See Sketch) } \\
& =\frac{\pi(3)^{2}}{2}+6 \times 2 \\
& \therefore \int_{0}^{6} f(x) d x=\frac{9 \pi}{2}+12
\end{aligned}
$$

(b)

$$
\int_{0}^{14} f(x) d x=\int_{0}^{6}+\int_{6}^{10}+\int_{10}^{14}
$$

we already have $\int_{0}^{6} f(x) d x$ from part (a).
And, from the segnimetry shown in the sketch $\int_{6}^{1} f(x) d x=0$

$$
\begin{aligned}
& \int_{10}^{14} f(x) d x=-(\text { area of } \square+\text { area of } U) \\
&=-\left(4 \times 2+\frac{\pi 2^{2}}{2}\right)=-(8+2 \pi) \\
& \therefore \quad \int_{0}^{14} f(x) d x=\left[\frac{9 \pi}{2}+12\right]+0-(8+2 \pi)
\end{aligned}
$$

Answer: $\int_{0}^{14} f(x) d x=\frac{5 \pi}{2}+4$
[5] (a) $y=\frac{(2 x+1)^{3}}{x^{5} \sqrt{x+1}}$. To find $\frac{d y}{d x}$, apply \ln to both sides.

$$
\ln y=\ln \left[\frac{(2 x+1)^{3}}{x^{5}(x+1)^{1 / 2}}\right]=3 \ln (2 x+1)-\left[5 \ln x+\frac{1}{2} \ln (x+1)\right]
$$

Differentiate both sides with respect to x :

$$
\begin{aligned}
\frac{1}{y} \frac{d y}{d x} & =\frac{3}{(2 x+1)}(2 x+1)^{\prime}-\left[5\left(\frac{1}{x}\right)+\frac{1}{2}\left(\frac{1}{x+1}\right) \cdot(x+1)^{\prime}\right] \\
& =\frac{6}{2 x+1}-\frac{5}{x}-\frac{1}{2(x+1)} \\
\therefore \frac{d y}{d x} & =\left(\frac{(2 x+1)^{3}}{x^{5} \sqrt{x+1}}\right)\left[\frac{6}{2 x+1}-\frac{5}{x}-\frac{1}{2(x+1)}\right]
\end{aligned}
$$

* Simplifying this further docent seem to give anything. "simpler." so we can leave it here!
(b)

$$
\text { (b) } \begin{aligned}
& f(x)=x \cdot \sin ^{-1}\left(\frac{x}{2}\right)+\sqrt{4-x^{2}} \\
& \frac{d f}{d x}=x \cdot \frac{d}{d x} \sin ^{-1}\left(\frac{x}{2}\right)+\sin ^{-1}\left(\frac{x}{2}\right) \cdot \frac{d}{d x}+\frac{d}{d x}\left(4-x^{2}\right)^{1 / 2} \\
&=x \cdot \frac{1}{\sqrt{1-(x / 2)^{2}}} \cdot\left(\frac{1}{2}\right)+\sin ^{-1}\left(\frac{x}{2}\right) \cdot 1+\frac{1}{2 \sqrt{4-x^{2}}} \cdot(-2 x) \\
&=\frac{x}{2 \sqrt{4-x^{2}}} \times 4+\sin ^{-1}\left(\frac{x}{2}\right)-\frac{x}{\sqrt{4-x^{2}}} \\
& \therefore \frac{d f}{d x}=\sin ^{-1}\left(\frac{x}{2}\right)
\end{aligned}
$$ that $f^{\prime}(c)=\frac{f(b)-f^{\prime}(a)}{b-a}$.

In everyday language: If the function is differentiable on the interval (ie., its graph is smooth), them there is at least one point between a and b where the tangent live has the same slope as the secant line that joins $(a, f(a))$ and $(b, f(b))$.
[7] (a) Given $x^{3}-x=2$. Let $f(x)=x^{3}-x-2$.
Then $f^{\prime}(x)=3 x^{2}-1$, and $f^{\prime}(1)=3-1=2$
The linear approx at $x=1$ is: $L(x)=f(1)+f^{\prime}(1)(x-1)=-2+2(x-1)$
To find the root, set $L(x)=0: 0=-2+2(x-1) \Rightarrow x=2$
At the end of one Newt on iteration, $x_{1}=2$
(b) $[x] x: A(x)=x^{2} \Rightarrow \frac{d A}{d t}=2 x \cdot \frac{d x}{d t} \Rightarrow \frac{d x}{d t}=\left(\frac{1}{2 x}\right) \frac{d A}{d t}$

Since area is increasing at a constant rate, we know $\frac{d A}{d t}=$ positive constant. Thus, as x increases, $\frac{d x}{d t}$ decrease.
Answer: The side length increases at a decreasing rete.
(c) Graph of function on closed interval the has a critical point but no abs. extremes y is defined on the closed interval $[0,4]$ There is a critical point at $x=2$, surice $y^{\prime}=\triangle$ NE at $x=2$. y has no absolute minimum or maximum
(d) Let $L(x)$ denote lien approx of $f(x)$ at $x=a$.

$$
\begin{aligned}
& \text { Then } \begin{array}{l}
L(x)=f(a)+f^{\prime}(a)(x-a) \\
E(x)=f(x)-L(x)=f(x)-f(a)-f^{\prime}(a)(x-a) \\
\text { And } \frac{E(x)}{(x-a)}=\frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{x-a}=\frac{f(x)-f(a)-f^{\prime}(a)}{x-a} \\
\therefore \lim _{x \rightarrow a} \frac{E(x)}{x-a}=\lim _{x \rightarrow a}\left[\frac{\left.f(x)-f(a)-f^{\prime}(a)\right]=f^{\prime}(a)-f^{\prime}(a)}{x-a}\right.
\end{array}, \quad l i \operatorname{lin}
\end{aligned}
$$

Answer: $\lim _{x \rightarrow a} \frac{E(x)}{x-a}=0$
Grading Notes
[1] (a) $=4$ points, $(b)=2$ points
(a) 1 pt each for correct: $a, b, f\left(x^{\circ}\right)$, step
(b) $0.5 p t=$ get $\Delta x=1,0.5 p t=$ got correct x-values, $1 p t=$ correctly sunn values
[2]
$1.5 \mathrm{pt}=$ introduce unknowns $\&$ setup sem. for total length $/$ perimeter
1 pt $=$ correct der rect objective function with 1 unknown
shows correct verivature of $A ; 1.5 p^{t}=$ find C.P. and make table that
1 pt = state correct domain where each part is valid
1 pt = axplain/show/justify each of a critical points
1 pt $=$ correct sign graph of y^{\prime}
1 pt = interpret/show why \& where g is increasing/decreasuig
1 pt = show where \& why lo cal extreme occurs..'
[4] (a) $=3$ points, (b) $=3$ points
(a) p pt = attempt to find sum of area of \triangle and \square.
rpt $=$ do it correctly and add areas to show correct ansuvel
(b) 1 pt = correctly split $\rho^{1 / 4}$ into reasonable sub-problems.

1 pt = evaluate the sub-probleus correctly get numerical values
pt $=$ add numerical values correctly to state final answerer.
[5] (a) 1 pt = attempt to apply \ln on both sides
apt $=$ do it correctly and simplify to: $\ln y=3 \ln (2 x+1)-5 \ln x+\frac{1}{2}-7$
2 pt $=$ take derivatives on both sides correctly and simplify
pl = multiply through by y, and reverse Dup. The expression for
[6] (b) $3 p t=$ correct derivative of $x \cdot \sin ^{-1}\left(\frac{x}{2}\right)$ and simplify
2pt $=$ correct derivative of $\sqrt{4-x^{2}}$ and smiplify.
t pt = add correctly and get answer
[6] 1 pt = correct graph illustrate statement of MVT.
$1+1$ pt $=$ correct hypotheses + math form of conclusion
$1 p t=$ explain in ordinary language, using secant/tangect etc.
[7] (a.) $1 p t=$ find $f(1)$ and $f^{\prime}(1)$ correctly
1 pt $=$ set up expression for $L(x)$ or formula for un. cAter.
0.5 pt $=$ solve and get $x=2$.
(b) $1 p t=\operatorname{define} A(x)=x^{2}$, differentiate and get $\frac{d A}{d t}=2 x \cdot \frac{d x}{d t}$ 0.5 pt $=$ express dolt as $(1 / 2 x) \frac{d f}{d t}$ and argue that dy dot decreases pt $=$ correct answer (icel by intuition)
(c) $1 p t=$ graph has no abs extremes; $0.5 p t=$ et has $C . P$. , $0.5 \mathrm{pt}=$ closed riterval; $0.5 \mathrm{pt}=$ axis labels.
(d) Apt $=$ correctly plugin $f(x)$ and $L(x)$ into $\frac{E(x)}{x-a}$.
1.5 pt $=f$ gigue out how to get correct limit as $x \rightarrow a$.

