Student name:

MATH 180: Calculus A
Spring 2022

Test 2

April 5, 2022

Instructions:

- This is a regular "closed-book" test, and is to be taken without the use of notes, books, or other reference materials. Collaboration or group work is not permitted.
- Cell-phone usage in any form is prohibited for the entire duration of the test. This also applies to any restroom breaks taken during the test.
- Answer all questions on separate paper (not on this sheet!).
- Solve all problems using algebra, except if specifically indicated otherwise.

Show all solution steps, give reasons, and simplify your answer to receive full credit.

- The time limit for taking this test is 80 minutes from the scheduled start time.
- This test adds up to 50 points. It contains questions numbered (1) through (7).
(1) [4 pts.] The graphs of two different functions $f(x)$ and $g(x)$ are shown below:

For each function, identify the graph of its derivative from the following (give reasons):
(A)
(B)
(C)

(G)

(F)

(D)

(H)
(E)

(2) [4 pts.] Indicate true or false for each, and give reason(s) to justify your answer:
(a) If f is differentiable at $x=a$, then $\lim _{x \rightarrow a} f(x)$ exists.
(b) If the $\lim _{x \rightarrow a} f(x)$ exists, then f is differentiable at $x=a$.
(3) [4 pts.] Suppose $h(x)=f(g(x))$. Find $h^{\prime}(2)$, given the following: $g(2)=-1, g^{\prime}(2)=-2$, $f(-1)=0, f^{\prime}(-1)=4$. Show steps.
(4) $[6 \mathrm{pts} . \times 3]$ For each of the following, find $\frac{d y}{d x}$ and simplify:
(a) $y=\frac{x^{2}}{2 x-1}$
(b) $y=\sqrt{x} e^{\sin x}$
(c) $x=\cos \left(t^{2}-\cos t\right), y=\sin (3 t)$
(5) [6 pts.] Let $f(x)=\frac{x^{2}-4 x+3}{x^{3}+x^{2}-x-1}$. Explain what limits you need to evaluate to find all the vertical and horizontal asymptotes of f. Evaluate those limits and find the asymptotes.
(6) [6 pts.] Give brief answers to each of the following (unrelated) questions, as instructed.
(i) A descending aircraft approaches the airport where it is to land, in a straight flight path. Suppose $h(x)$ denotes its altitude in feet, as a function of distance from the airport in miles. Give a quantitatively precise explanation of what $h^{\prime}(20)=-300$ means in this context, and give its units.
(ii) Suppose $h(x)=f(x) \cdot g(x)$. Use each of the two limit-based definitions of the derivative to set up formulas for finding h^{\prime} at $x=a$. You don't need to actually evaluate the limit and/or simplify any further.
(7) [8 pts.] Shown here is the graph of f^{\prime}, the derivative of some continuous function f. Based on this graph, answer the following questions (assume the graph of f^{\prime} continues to infinity on both ends in the direction shown):
(a) On what interval(s) is f increasing, and on what interval(s) is it decreasing? Give reasons.
(b) At what x-values does f have local minimum and maximum values? Reason?
(c) What kind of concavity does f have when $-1<x<0$? Reason?
(d) Is there enough information here to tell whether $f(0)$ is less than, or greater than, $f(2)$? Explain your answer.

Spring 2022: calculus A: Test 2 solution
[1] $f^{\prime}(x)=G r a p h D$. Reason: f has horizontal tangents at 3 points, where f^{\prime} must equal 0 . only graph D has 3 places where $f^{\prime}=0$. In addition, regions of increasing f coincide with positive regions in graph D.

$$
g^{\prime}(x)=\text { Graph } F
$$

Reason: Since g is increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$, g^{\prime} must be positive on $(-\infty, 0)$ and negative on $(0, \infty)$. Only F has thin behavior.
[2]
(a) True. Reason: Since f is differentiable at $x=a$, it must be continuous there, by a theorem. Coukincity implies $\lim _{x \rightarrow a} f(x)$ exists.
(b) False. Reason: Here is a counterexample: Let $f(x)=|x|$.

At $x=0, f$ is continuous. Thus, $\lim _{x \rightarrow i} f(x)$ exists.
But f is not differentiable at $x=0$.
[3] Given $h(x)=f(g(x))$;
By the chain rule: $h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

$$
\therefore h^{\prime}(2)=f^{\prime}(g(2)) \cdot g^{\prime}(2)=f^{\prime}(-1) \cdot(-2)=(4) \cdot(-2)
$$

$$
\because h^{\prime}(2)=-8
$$

These values are from the given date in the problem.
[4](a) $y=\frac{x^{2}}{2 x-1}$
Using quotient rule: $y^{\prime}=\frac{(2 x-1)\left(x^{2}\right)^{\prime}-x^{2}(2 x-1)^{\prime}}{(2 x-1)^{2}}$

$$
\begin{gathered}
\text { quotient rule: } y=\frac{(2 x-1)^{2}}{} \begin{array}{l}
y^{\prime}=\frac{(2 x-1)(2 x)-x^{2}(2)}{(2 x-1)^{2}}=\frac{4 x-2 x^{2}}{(2 x-1)^{2}} \\
\therefore y^{\prime}
\end{array}=\frac{2 x^{2}-2 x}{(2 x-1)^{2}}=\frac{2 x(x-1)}{(2 x-i)^{2}}
\end{gathered}
$$

[4](b) $y=\sqrt{x} \cdot e^{\sin (x)}$
Use product rule + chain rule: $y^{\prime}=\sqrt{x}\left[e^{\sin (x)}\right]^{\prime}+e^{\sin (x)}(\sqrt{x})^{\prime}$

$$
\begin{aligned}
& \Rightarrow y^{\prime}=\sqrt{x}\left[e^{\sin (x)} \cdot(\sin x)^{\prime}\right]+e^{\sin (x)} \cdot\left(\frac{1}{2 \sqrt{x}}\right) \\
& \therefore y^{\prime}=e^{\sin (x)}\left[\sqrt{x} \cdot \cos (x)+\frac{1}{2 \sqrt{x}}\right]=\frac{e^{\sin (x)}}{2 \sqrt{x}}[2 x \cdot \cos x+1]
\end{aligned}
$$

[4] (c) $x=\cos \left(t^{2}-\cos t\right), y=\sin (3 t)$
The derivative of paranctric curves is: $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$

$$
\begin{aligned}
& y=\sin (3 t) \Rightarrow \frac{d y}{d x}=\cos (3 t) \cdot \frac{d}{d t}(3 t)=3 \cdot \cos (3 t) \\
& x=\cos \left(t^{2}-\cos t\right) \Rightarrow \frac{d x}{d t}=-\sin \left(t^{2}-\cos t\right) \cdot \frac{d}{d t}\left(t^{2}-\cos t\right) \\
& =-\sin \left(t^{2}-\cos t\right) \cdot(2 t+\sin t) \\
& \therefore \frac{d y}{d x}=-\frac{3 \cdot \cos (3 t)}{\sin \left(t^{2}-\cos t\right) \cdot(2 t+\sin t)}
\end{aligned}
$$

[5]

$$
f(x)=\frac{x^{2}-4 x+3}{x^{3}+x^{2}-x-1}
$$

* Horizontal asynupbotes. If $\lim _{x \rightarrow \pm \infty} f(x)=L$, then $y=L$ is a horizontal asymptote of f.
* Vertical asegnpbotes: If $\lim _{x^{x} \rightarrow a} f(x)=+\infty$ or $-\infty$, then $x=a$ is a vertical asymptote. [The limit could be 1 -sided] Factor denouninata to get candidate points where $f \rightarrow+\infty$ or

$$
x^{3}+x^{2}-x-1=x\left(x^{2}-1\right)+\left(x^{2}-1\right)=\left(x^{2}-1\right)(x+1)=(x-1)(x+1)^{2}
$$

Thus, $x= \pm 1$ may be vertical asymptotes.
check numerator: When $x=1$, num $=0$; when $x=-1$, nom $=8$.
\Rightarrow Only one vertical asymptote: at $x=-1$

* Horizontal:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-4 x+3}{x^{3}+x^{2}-x-1}=\lim _{x \rightarrow \infty} \frac{1 / x-4 / x^{2}+3 / x^{3}}{1+1 / x-1 / x^{2}-1 / x^{3}}=\frac{0}{1}
$$

Thus, horizontal asymptote is: $y=0$ (ie, the x-axis)
NoTE: The limit as $x \rightarrow-\infty$ is the same for rationals.
[6] (i) $h^{\prime}(20)=-300$ means: When the aircraft is 20 miles from the airport, 'ts altitude is decreasing at the rate of 300 feet per mile.
(ii) $\quad h(x)=f(x) \cdot g(x)$.

$$
\begin{aligned}
& h(x)=f(x) \cdot g(x) \cdot \\
& h^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x) \cdot g(x)-f(a) \cdot g(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h) \cdot g(a+h)-f(a) g(x)}{h}
\end{aligned}
$$

[7] (a) f in 1 on the intervals: $(-\infty,-2.5),(-0.4,0)$ and $(0,3.2)$.
Reason: $f^{\prime}>0$ those intervals
f is on: $(-2.5,-0.4)$ and $(3.2, \infty)$. Reason: $f^{\prime}<0$ there.
(b) f has local minimum at: $x=-0.4$

Reason: f^{\prime} crosses the x-axis from negative to positive there f has local maocivium at: $x=-2.5$ and $x=3.2$
Resson: f^{\prime} crosses x-asides from positive to negative there.
(c) f is concave up on $-1<x<0$, because f^{\prime} is increasing on that interval.
(d) yes. $f(0)$ must be less than $f(z)$;

Reason: Between $x=0$ and $x=2, f^{\prime \prime}$ is always positive, which means f in continuously increasing. Therefore, $f(z)$ will have to be larger than $f(0)$.
Gradungnotes:
[1] 2 paints each for correct f^{\prime} and g '
For each case, 1.5pt for correctly identifying, and 0.5 pt for reason.
[2] (a) $=2$ point, $(b) \leq 2$ points
For each, 50/50 split between answer \& reason.
[3] $2 p t=$ get $h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x) ; \quad 2 p t=p l u g$ in right values \& get ansuen.
[4] (a) $2 p t=k n o w /$ show $Q R$, with correct quantities pliegged into night placer; $3 p t=$ correct derivatives in numerator of $Q R$.
$1 \mathrm{pt}=$ Clean up and get final result
(b) 1 pt = peng into product rule correctly
$1.5 p t=$ correctly dyferantiate $\sqrt{x} ; 2.5 p t=$ differentiate $e^{\sin (x)}$
pt $=$ simplify to some reasonable form
(c) $1 p t=$ know/show that $d e s / d x=(d y / d t) /(d x / d t)$
$2+2 p t=$ correctly differentiate $x(t)+y(t)$.
$1 p t=$ correctly put together and get $d y / d x$.
[5] $1+1$ pt = explain limit-based den. of $H \cdot A \cdot+V \cdot A \cdot ; 2 p t=$ correct work with vertical

Fol(ii): 1.5 pt for each correct linit-based form.
[7] 2 pts each for (a)-(d). Generally, solso split for answer/reason -

