Quiz 6-3/29/2022

(I) Differentiate with respect to x and simplify: $y=\frac{5 x^{2} \sqrt{x}-3 x+1}{\sqrt{x}}$. ["Differentiate" means "find derivative."]
(II) Suppose $f(1)=2$ and $f^{\prime}(1)=-3$. Find the derivative of $x^{2} f(x)$ at $x=1$.

Solution

(I) The simplest strategy for this is to do some preliminary algebra and rewrite it in a form suitable for applying the power rule:

$$
y=\frac{5 x^{2} \sqrt{x}-3 x+1}{\sqrt{x}}=\left(5 x^{2} \cdot x^{1 / 2}-3 x+1\right) \cdot x^{-1 / 2}=5 x^{2}-3 x^{1 / 2}+x^{-1 / 2}
$$

Therefore, $y^{\prime}=10 x-3 \cdot \frac{1}{2} x^{-1 / 2}+1 \cdot\left(-\frac{1}{2} x^{-3 / 2}\right)=$

$$
10 x-\frac{3}{2 \sqrt{x}}-\frac{1}{2 x \sqrt{x}} \quad \text { OR } \quad \frac{20 x^{2} \sqrt{x}-3 x-1}{2 x \sqrt{x}} \quad \text { (answer) }
$$

Method 2: Via quotient rule:

$$
\begin{aligned}
& y=\frac{5 x^{2} \sqrt{x}-3 x+1}{\sqrt{x}} \Rightarrow y^{\prime}=\frac{\left(5 x^{5 / 2}-3 x+1\right)^{\prime} \sqrt{x}-\left(5 x^{5 / 2}-3 x+1\right)(\sqrt{x})^{\prime}}{x} \\
&=\frac{\left[(25 / 2) x^{3 / 2}-3\right] \sqrt{x}-\left(5 x^{5 / 2}-3 x+1\right)\left(\frac{1}{2 \sqrt{x}}\right)}{x} \\
&=\frac{\left(25 x^{5 / 2}-6 x\right)-\left(5 x^{5 / 2}-3 x+1\right)}{2 x \sqrt{x}}=\frac{20 x^{2} \sqrt{x}-3 x-1}{2 x \sqrt{x}} \\
&=10 x-\frac{3}{2 \sqrt{x}}-\frac{1}{2 x \sqrt{x}} \quad \text { (same answer as before!) }
\end{aligned}
$$

(II) $\left[x^{2} f(x)\right]^{\prime}=x^{2} f^{\prime}(x)+\left(x^{2}\right)^{\prime} f(x)=x^{2} f^{\prime}(x)+2 x f(x)$

At $x=1$ this becomes: $1^{2} \cdot f^{\prime}(1)+2 \cdot 1 \cdot f(1)$

$$
=1 \cdot(-3)+2 \cdot 2=1
$$

Grading: Total points possible $=6$.
0.5 pt - Any reasonable attempt.
3.5 pt for $(\mathrm{I}): 1.5 \mathrm{pt}=$ correctly rewrite as powers of x.
$1.5 \mathrm{pt}=$ apply power rule correctly.
$0.5 \mathrm{pt}=$ simplify .
For quotient rule method:
$1 \mathrm{pt}=$ correctly plug into QR formula.
$1.5 \mathrm{pt}=$ correctly find derivatives in the numerator.
$1 \mathrm{pt}=$ simplify to a correct form of the answer.
2 pt for (II): $1 \mathrm{pt}=$ find correct 2 terms in derivative of $x^{2} f(x)$.
$1 \mathrm{pt}=$ plugin given numbers and correctly evaluate result.

