Quiz 5-3/15/2022

(I) The graph of some function $y=f(x)$ is shown. Sketch the graph of $f^{\prime}(x)$. You may do this directly on the graph below. Include a short discussion to justify why your graph of $f^{\prime}(x)$ is the right solution.

(II) Sketch the graph of a function f that satisfies:

$$
f^{\prime}(x)<0 \text { for all } x, f^{\prime \prime}(x)>0 \text { if } x<0, f^{\prime \prime}(x)<0 \text { if } x>0 .
$$

Be sure to identify your axes and include needed labels.

Solution

(I) The dotted curve shown below is the graph of $f^{\prime}(x)$

Resaoning: f^{\prime} is 0 wherever the tangent line is horizontal on $f(x)$. There are 2 places where this occurs: $x=-2$ and $x=2$. Our f^{\prime} graph intersects the x - axis at those points. When $x=0$, the kink in the graph of f makes f^{\prime} undefined. Also note that f is decreasing wherever f^{\prime} is negative, and f is increasing wherever f^{\prime} is positive.
(II)

Resaoning: Since we want $f^{\prime}<0$ for all x, the graph of f is always decreasing.
When $x<0$ we want $f^{\prime \prime}(x)>0$, which means the graph must be concave up.
When $x>0$ we want $f^{\prime \prime}(x)<0$, meaning a concave down graph.

Grading: Total points possible $=6$.
0.5 pt - Any reasonable attempt.
3.5 pt for $(\mathrm{I}): 1 \mathrm{pt}=$ graph of derivative intersects x-axis at the right places.
$1 \mathrm{pt}=$ derivative is undefined at $x=0$.
$1 \mathrm{pt}=$ correct sign throughout.
$0.5 \mathrm{pt}=$ explanation.
2 pt for (II): $0.5 \mathrm{pt}=$ any graph of a valid function that is decreasing.
$0.5 \mathrm{pt}=$ correct concavity for $x<0$.
$0.5 \mathrm{pt}=$ correct concavity for $x>0$.
$0.5 \mathrm{pt}=$ axis labels.

