Quiz 3-2/22/2022

(I) Evaluate the following limits using the graphs of f and g given below (Note: correct reasoning is far more important here than correct answers):
(a) $\lim _{x \rightarrow 1}[f(x) \cdot g(x)]$
(b) $\lim _{x \rightarrow 2}\left[x^{2} f(x)\right]$

(II) Use the mathematical definition of continuity to determine whether the following function is continuous at $x=0$ (show steps)

$$
f(x)=\left\{\begin{array}{cc}
\frac{3 x}{x^{2}-x} & \text { if } x \neq 0 \\
-3, & \text { if } x=0
\end{array}\right.
$$

Solution

(I) According to limit laws: Limit of a product $=$ product of the limits, provided both limits individually exist.
(a) When $x \rightarrow 1$, we cannot apply the limit laws directly because the limit of $g(x)$ does not exist. However, both functions have left- and right- limits. So, we can apply limit laws to find the limit on each side separately:

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}}[f(x) \cdot g(x)]=\lim _{x \rightarrow 1^{-}} f(x) \cdot \lim _{x \rightarrow 1^{-}} g(x)=1 \cdot 2=2 \\
& \lim _{x \rightarrow 1^{+}}[f(x) \cdot g(x)]=\lim _{x \rightarrow 1^{+}} f(x) \cdot \lim _{x \rightarrow 1^{+}} g(x)=1 \cdot 1=1
\end{aligned}
$$

Since the left- and right- limit are not the same, $\quad \lim _{x \rightarrow 1}[f(x) \cdot g(x)]=$ DNE
(b) For this case we can apply limit laws, since both limits exist:

$$
\lim _{x \rightarrow 2}\left[x^{2} \cdot f(x)\right]=\lim _{x \rightarrow 2} x^{2} \cdot \lim _{x \rightarrow 2} f(x)=4 \cdot 2==8
$$

(II) According to the definition, continuity at $x=0$ requires: $\lim _{x \rightarrow 0} f(x)=f(0)$.

In this problem, $f(0)=-3$.
To find $\lim _{x \rightarrow 0} f(x)$ we must try to do some algebra and cancel an x

$$
\frac{3 x}{x^{2}-x}=\frac{3 x}{x(x-1)}=\frac{3}{x-1} \quad(\operatorname{provided} x \neq 0)
$$

Therefore, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{3}{x-1}=-3$
Since $f(0)=-3$ and $\lim _{x \rightarrow 0} f(x)=-3$, it follows that $\underline{f \text { is continuous at } x=0}$.

Grading: Total points possible $=6$.
3 pt for (I): 1.5 pt for (a) +1.5 pt for (b).
No credit for correct answers without correct reason.
3 pt for (II): $1 \mathrm{pt}=$ Attempt to apply correct defn of continuity at $x=0$.
$0.5 \mathrm{pt}=$ Find correct $f(0)$.
$1 \mathrm{pt}=$ Find correct $\lim _{x \rightarrow 0} f(x)$.
$0.5 \mathrm{pt}=$ State correct conclusion.

