Quiz 2-2/15/2022

(I) Sketch the graph of a function f that satisfies all the following requirements:

$$
\begin{gathered}
\lim _{x \rightarrow-2^{-}} f(x)=1, \quad \lim _{x \rightarrow-2^{+}} f(x)=-3, \quad f(-2)=0 \\
\lim _{x \rightarrow 3} f(x)=3, \quad f(3)=\text { undefined }
\end{gathered}
$$

As always, graph must show all labels and symbols needed to read it correctly.
(II) Find a formula for the inverse of the function $f(x)=\frac{3-2 x}{2-x}$. Show steps.

Solution

(I) At $x=-2$ the graph must break, to accommodate unequal limits on the left and right. Since $f(-2)=0$, there is a closed circle on the x-axis at that point. At $x=3$ there is a hole in the graph, because the limit exists, but the function is undefined. There are many possible correct solutions to this problem. One example of a function that satisfies all the requirements is shown below

(II) To find the inverse, solve for x in terms of y.

The given equation is: $\quad y=\frac{3-2 x}{2-x}$
Multiply both sides by $2-x: \quad y(2-x)=3-2 x \Rightarrow 2 y-x y=3-2 x$
Group all x-terms on one side: $\quad 2 x-x y=3-2 y$
Factor out x and divide through by factor: $\quad x(2-y)=3-2 y \Rightarrow x=\frac{3-2 y}{2-y}$
Wow! Inverse is the same as the original function!
Answer: $f^{-1}(x)=\frac{3-2 x}{2-x}$
Verify answer (not a required part of the solution):
$f\left(f^{-1}(x)\right)=\frac{3-2 f^{-1}(x)}{2-f^{-1}(x)}=\frac{3-2(3-2 x) /(2-x)}{2-(3-2 x) /(2-x)}=\frac{3(2-x)-2(3-2 x)}{2(2-x)-(3-2 x)}=\frac{x}{1}=x$

Grading: Total points possible $=6$.
3 pt for (I): 0.5 pt for each of the following 6 features:
(a) correct left-limit at $x=-2$, including open circle
(b) correct right-limit at $x=-2$, including open circle
(c) correct value of $f(-2)$, shown with dot or with closed circle
(d) correct limit from left $\&$ right at $x=3$
(e) correctly leave $f(3)$ undefined
(f) graph shows all needed axes labels

3 pt for $(\mathrm{II}): \quad 0.5 \mathrm{pt}=$ Attempt to flip x, y, (or otherwise) solve for y.
$2 \mathrm{pt}=$ correct algebraic steps till getting $x=\frac{3-2 y}{2-y}$.
$0.5 \mathrm{pt}=$ correctly express final result in the form $y=\cdots$, or $f^{-1}(x)=$...

