Student name:

MATH 180: Calculus A
Spring 2022

Final exam

May 19, 2022

Instructions:

- This is a regular "closed-book" test, and is to be taken without the use of notes, books, or other reference materials. Collaboration or group work is not permitted.
- Cell-phone usage in any form is prohibited for the entire duration of the test. This also applies to any restroom breaks taken during the test.
- Answer all questions on separate paper (not on this sheet!).
- Solve all problems using algebra, except if specifically indicated otherwise.

Show all solution steps, give reasons, and simplify your answer to receive full credit.

- The time limit for taking this test is 2 hours from the scheduled start time.
- This test contains questions numbered 1-7. It adds up to 50 points.
(1) [4 pts.] Give a mathematically precise definition of:
(a) The derivative of a function.
(b) The definite integral $\int_{a}^{b} f(x) d x$.
(2) [4 pts.] Find the most general form of f, given $f^{\prime}=3 e^{x}+\frac{1}{2 x}+\sqrt{x}$.
(3) [4 pts.] Give brief answers to each of the following as instructed:
(a) Water is flowing out of a pipe at the rate of $g^{\prime}(t)$ gallons per minute. Interpret what $\int_{2}^{5} g^{\prime}(t) d t=68$ means in this context, and give its units.
(b) Suppose A is a differentiable function that represents the amount of a chemical (in mg.) present x minutes after the start of a chemical reaction. What are the units of $A^{\prime}(x)$? What is the meaning of $A^{\prime}(3)=-4$?
(4) [5 pts. $\times 2]$ Evaluate the following limits, showing all steps and reasons:
(a) $\lim _{t \rightarrow 3}\left(\frac{2}{t-3}-\frac{12}{t^{2}-9}\right)$
(b) $\lim _{x \rightarrow-\infty} \frac{1-4 e^{x}}{1+2 e^{x}}$ and $\lim _{x \rightarrow \infty} \frac{1-4 e^{x}}{1+2 e^{x}}$
(5) [5 pts. $\times 3]$ Differentiate each of the following with respect to x and simplify:
(a) $\quad f(x)=|x| \sin (x)$
(c) $y=(1+2 x)^{1 / x}$
(b) $\quad h(x)=\frac{x^{4}-3 x+\sqrt{x} \sin x}{\sqrt{x}}$
(6) [5 pts.] Consider the function $g(x)=(x-2)^{4}(x+3)$. Show correct calculus and algebra steps for each of the following:
(a) Find all the local minimum and maximum values of g.
(b) Find the absolute minimum and maximum values of g on the interval $-3 \leq x \leq 5$.
(7) [8 pts.] All the following statements are false. For each, give an example (in the form of a clearly labeled graph, or an algebraic equation) showing the statement is false.
(a) If a function f is continuous on the interval $(0,4)$ then f^{\prime} exists for all x in that interval.
(b) If $f(x) \geq g(x)$ for all x in $(0,4)$, then $f^{\prime}(x) \geq g^{\prime}(x)$ for all x in that interval.
(c) If $f^{\prime}(x) \geq g^{\prime}(x)$ for all x in $(0,4)$, then $f(x) \geq g(x)$ for all x in that interval.
(d) If $\int_{0}^{4} f(x) d x \geq \int_{0}^{4} g(x) d x$, then $f(x) \geq g(x)$ for all x in $[0,4]$.

Calculus A: Spring 2022: Final Exam Solutions
[i] The derivative of a function $f(x)$ at $x=a$ is defined by

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

If this limit exists, then has a derivative at $x=a$
(b) The definite integral of a function f on the interval $[a, b]$ is

$$
\begin{array}{r}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x, \text { where } \Delta x=\frac{b-a}{n}, x_{i}=a+i \Delta x \\
x_{i}^{*} \text { is any point in }\left[x_{i-1}, x_{i}\right]
\end{array}
$$ x_{i}^{*} is any point in $\left[x_{i-1}, x_{i}\right]$

If this limit exists, then f is integrable on $[a, b]$.
[2] Given: $f^{\prime}=3 e^{x}+\frac{1}{2 x}+\sqrt{x}$
Taking antiderivatives term-by-tern, we get

$$
f=3 e^{x}+\frac{1}{2} \ln |x|+\frac{2}{3} x^{3 / 2}+c
$$

$c=$ arbitrary constant
[3] (a) $\int_{2}^{5} g^{\prime}(t) d t=68$ means; Between minute 2 and minute 5 the net out flow of water from the pipe is 68 gallons.
(b) $A(x)=$ amount of a chemical in mg. x minutes after start of reaction units of $A^{\prime}(x)=\frac{\text { mg. }}{\text { minute }}$
Meaning of $A^{\prime}(3)=-4$: Three minutes of the the start of the reaction, the rate of change in the amount of chernical present (with respect to (tine) is $-4 \mathrm{mg} / \mathrm{minute}$. Thus, the amount present is decreasing at the rate of 4 gm per minute.
[4] $\lim _{t \rightarrow 3}\left(\frac{2}{t-3}-\frac{12}{t^{2}-9}\right)=\lim _{t \rightarrow 3}\left(\frac{2(t+3)}{(t-3)(t+3)}-\frac{12}{(t-3)(t+3}\right)$

$$
=\lim _{t \rightarrow 3} \frac{2 t+6-12}{(t-3)(t+3)}=\lim _{t \rightarrow 3} \frac{2(t-3)}{(t-3)(t+3)}=\frac{2}{6}
$$

Answer: $\frac{1}{3}$
[4](6) $\lim _{x \rightarrow-\infty} \frac{1-4 e^{x}}{1+2 e^{x}}$. Since $\lim _{x \rightarrow-\infty} e^{x}=0$, we can write. this as $\frac{\lim _{x \rightarrow-\infty}\left(1-4 e^{x}\right)}{\lim _{x \rightarrow-\infty}\left(1+2 e^{x}\right)}=\frac{1-4(0)}{1+2(0)}=1$
And $\lim _{x \rightarrow \infty} \frac{1-4 e^{x}}{1+2 e^{x}}$ gives, upon plugin, $\frac{1-\infty}{1+\infty} \sim \frac{-\infty}{\infty}$ indeterminate
Apply L.H. pule: $\left.\lim _{x \rightarrow \infty} \frac{1-4 e^{x}}{1+2 e^{x}}=\lim _{x \rightarrow \infty} \frac{-4 e^{x}}{2 e^{x}}=\lim _{x \rightarrow \infty} \frac{-4}{2} E-2\right\}$
Answers: $\lim _{x \rightarrow-\infty} \frac{1-4 e^{x}}{1+2 e^{x}}=1$ and $\lim _{x \rightarrow \infty} \frac{1-4 e^{x}}{1+2 e^{x}}=-2$
[5] (a)

$$
\left.\begin{array}{l}
f(x)=|x| \sin (x)=\left\{\begin{array}{l}
x \cdot \sin (x), \text { if } x \geq 0 \\
-x \cdot \sin (x), \text { if } x<0
\end{array}\right. \\
\frac{d f}{d x}=\left\{\begin{array}{l}
x \cdot \cos (x)+\sin (x), \text { if } x>0 \\
-x \cdot \cos (x)-\sin (x), \text { if } x<0
\end{array}\right. \\
\text { As } x \rightarrow 0^{+}, \frac{d f}{d x} \rightarrow 0+0=0 \\
\text { As } x \rightarrow 0^{-}, \frac{d f}{d x} \rightarrow-0-0=0
\end{array}\right\} \Rightarrow \text { At } x=0, \frac{d f}{d x}=0.0 .
$$

Answer: $\frac{d f}{d x}= \begin{cases}x \cdot \cos (x)+\sin (x), & \text { if } x \geq 0 \\ -x \cdot \cos (x)-\sin (x), \text { if } x<0\end{cases}$
(b)

$$
h(x)=\frac{x^{4}-3 x+\sqrt{x} \cdot \sin x}{\sqrt{x}}=x^{7 / 2}-3 x^{1 / 2}+\sin (x)
$$

Thus, $\frac{d h}{d x}=\frac{7}{2} x^{5 / 2}-\frac{3 \cdot x^{-1 / 2}}{2}+\cos (x)$
Answer: $\frac{d h}{d x}=\frac{7}{2} x^{2} \sqrt{x}-\frac{3}{2 \sqrt{x}}+\cos (x)$
(c) $y=(1+2 x)^{1 / x}$.

Apply ln on both sides and differentiate implicitly.
All primes devote derivatives with respect to x.

$$
\begin{gathered}
\ln y=\ln (1+2 x)^{1 / x}=\frac{\ln (1+2 x)}{x} \\
\Rightarrow \frac{1}{y} y^{\prime}=x \cdot\left(\frac{1}{1+2 x}\right) \cdot(2)-\ln (1+2 x) \\
x^{2} \\
\therefore y^{\prime}=\frac{2 x-(1+2 x)^{1 / x}-\frac{[2 x-(1+2 x) \ln (1+2 x)]}{(1+2 x) x^{2}}}{\ln (1+2 x)} \\
y^{\prime}=\frac{(1+2 x)^{(1 / x-1)}}{x^{2}}-(1+2 x-(1+2 x) \ln (1+2 x)]
\end{gathered}
$$

[6] Given $g(x)=(x-2)^{4}(x+3)$
(a) For local extremes, I'll find critical points and use a sign that of $g^{\prime}(x)$.

$$
g^{\prime}(x)=4(x-2)^{3}(x+3)+(x-2)^{4}=(x-2)^{3}(5 x+10)
$$

Thus the critical points, corresponding to $g^{\prime}=0$, are: $x=2, x=-2$ sign chart of $g^{\prime}(x)$.

$$
\begin{aligned}
& g^{\prime}(-100)>0 \\
& g^{\prime}(0)=(-2)^{3}(10)<0
\end{aligned}
$$

$$
g^{\prime}(100)>0
$$

Local mini mum: $g(2)=0$
Local maximum: $g(-2)=(-4)^{4}$

$$
\begin{aligned}
& =-40 \\
& =256
\end{aligned}
$$

(b) For absolute extremes on $[-3,5]$:

Plug in end points and C.P.S into $g(x)$ and find values.

x	-3	-2	2	5
$g(x)$	0	256	0	648

Abs. Mininumi: $g(-3)=g(2)=0$
Abs. Moscincun: $g(5)=648$
Answers: The local minimums are: $g(2)=0$
The local maximums are: $g(-2)=256$
The abs. minimum on $[-3,5]$ is: $g(-3)=g(2)=0$
The abs. maximum on $[-3,5]$ is: $g(5)=648$
[7] (a)

(b)

(c)

(d)

f shown here is continvieus on $[0,4]$ but f^{\prime} is undefined at $x=2$, because of the sharp corner.

The graph shows a constant $f(x)$ and a linear $g(x)$ with positive slope. Thus, $f^{\prime}(x)=0$ and $g^{\prime}(x)>0$, Thus; $f(x) \geq g(x)$ on $(0,4)$ but $f^{\prime}<g^{\prime}$

In this graph, $f(x)$ has positive slope, and $g(x)$ hes negative slope. Thus $f^{\prime}>g^{\prime}$, but $f<g$ on $(0,4)$.
Here $\int_{0}^{4} f(x) d x=(1)(4)=4$, and $\int_{0}^{4} g(x) d x=0$ (or, my graph Thus $\int_{0}^{0} f^{4}<\int_{0}^{4} g$. But $f(x) \leqslant g(x)$

Grading Notes
[1] (a) $=2$ points, $(b)=2$ pout
For each: -0.5 pt if limit missing. No other partial credit
[2] 1 pt. each for correct integral of 3 terms. $0.5 \mathrm{pt}=$ show minimal $0 \cdot 5$ pt $=$ show constant of integration. steps/reasous
[3] (a) $=2$ points, $(b)=2$ points
(a) 0.5 pt $=$ know it is from minute 2 to $5: 0.5 p t=$ correct unit of $\int_{2}^{5} g^{\prime}(t) d t$; 1 pt $=$ correct rest of interprelaileo
(b) 1 pt $=$ correct units of $A^{\prime} ; 1 \mathrm{pt}=$ inter pretation of $A^{\prime}(3)=-4$.
[4] (a) 1 pt $=$ attempt to common denom; $2 p t=$ do common denom simplify, 1 pt = factor and cancel $(t-3) ;$ pt = plug in $t=3$ and getomswé
(b) 2 points for $x \rightarrow-\infty$ part; 3 pt for $x \rightarrow \infty$ part

For $x \rightarrow-\infty: 1+1$ pt for answer + reason
For $x \rightarrow \infty: 0.5 p t=$ heck inlet: $2 p t=$ apply LD H \& simplify; $0.5 \mathrm{pt}=$ answer
[5]
(a) 1 pt $=$ rewrite as correct piecewise fo with correct domain

2 pt = find correct derivative of both pieces
t pt = specify correct domain boudareis on derivative
1 pt $=$ justify/determire value of derivative at $x=0$.
(b) $1 p t=\operatorname{simplipy}$ reduce to 3 terms;

1 pt each for derivative of 3 terms; 1 pt $=$ write final answer in reasonable form
For QR based solution: 1 pt = Rnow/show correct $Q R$ formica;
$2 p t=$ get correct derivatives in numerator; $2 p t=$ sumplify to reasonable form.
(c) 1 pt $=$ apply \ln and simplify R. $H: 5 ; 0.5 \mathrm{pt}=$ correctly differentiate $\mathrm{C} \cdot \mathrm{H} \cdot \mathrm{S}$.
2.5 pt $=$ complete/correct derivatwe of $\mathrm{B} \cdot \mathrm{H}-\mathrm{S} ; ; 1 \mathrm{pt}=$ multi ply by y and reverse
[6] $z p t=$ correct derivative of g, andalgebracc work leading to $2 c \cdot p$ s
2 pt $=$ correct sign analysis or chart showing +1 -intervals
For (a): $1 p t=$ state correct func values of g at mininum/maxinum
For (b): Apt $=$ correct x-values in a table; answers carry no
additional/separate credit
[7] $(a)=(b)=(c)=(d)=2$ points

