Worksheet 8

1. Differentiate each of the following functions and simplify:
(a) $y=\tan ^{3} x$
(h) $w(t)=\left(t^{3}+t\right)^{3} \sin \left(t e^{t}\right)$
(b) $z=\tan \left(x^{3}\right)$
(c) $f(x)=\sqrt{x-x^{2}}$
(i) $y=\left(\frac{x+1}{x-3}\right)^{4}$
(d) $g(x)=\sqrt{x-x^{2}} e^{3 x}$
(j) $f(x)=\sin ^{3}(2 x)+\cos ^{3}(x)$
(e) $h(x)=\sqrt{x-x^{2}} e^{\sin (3 x)}$
(k) $g(x)=\sin ^{3}(2 x) \cdot \cos ^{3}(x)$
(f) $v(t)=\sin \left(t e^{t}\right)$
(l) $h(x)=\sqrt{\sin ^{3}(2 x)+\cos ^{3}(x)}$
2. Suppose $h(x)=f(g(x))$ and $r(x)=g(f(x))$, and we are given the information in the following table

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-4	0	-5	0	5
-2	2	-2	4	3
0	4	2	6	1
2	-6	1	6	-1
4	-4	3	4	-3
6	0	5	0	-5

(a) Find $h^{\prime}(-2)$ and $h^{\prime}(2)$.
(b) Find $r^{\prime}(-2)$ and $r^{\prime}(4)$.
(c) Suppose $s(x)=f(g(f(x)))$. Find $s^{\prime}(0)$.
3. Find $d y / d x$ for each of the following:
(a) $y=\tan ^{3}(\sin x)$
(b) $x=t^{3}-3 t^{2}+1, \quad y=\frac{1}{t \sqrt{t}}$
(c) $x=2 \sin (3 t), \quad y=\cos (3 t)$
(e) $x=r \sin (\theta-\sin \theta), \quad y=r(1-\cos (\theta))$ with r being a constant.
(d) $x=2 \sin ^{2}(3 t), \quad y=\cos ^{3}(3 t)$
(f) $y=A \cos (\omega x+\delta)$

Here A, ω, δ are constants.
4. Find solutions to each of the following, as instructed.
a) Find an equation of the tangent line to the curve $x=2 \sin (t)+5, y=4-5 \cos (t)$ at $t=\frac{5 \pi}{4}$.
b) Find the (x, y) coordinates of the point(s) where the curve $x=2 \sin (t)+5$, $y=4-5 \cos (t)$ has horizontal tangent lines.
c) Find an equation of the tangent line to the curve $x=\cos (\theta)-\sin (2 \theta)$, $y=\sin (\theta)+\cos (2 \theta)$ at $\theta=2$.
d) Show that the curve $x=\sin t, y=\sin (t+\sin t)$ has two tangent lines at the origin, and find their equations.

