Worksheet 8

- 1. Differentiate each of the following functions and simplify:
 - (a) $y = \tan^{3} x$ (b) $z = \tan(x^{3})$ (c) $f(x) = \sqrt{x - x^{2}}$ (d) $g(x) = \sqrt{x - x^{2}} e^{3x}$ (e) $h(x) = \sqrt{x - x^{2}} e^{\sin(3x)}$ (f) $v(t) = \sin(t e^{t})$ (g) $w(t) = \frac{\sin(t e^{t})}{t^{3} + t}$ (h) $w(t) = (t^{3} + t)^{3} \sin(t e^{t})$ (i) $y = \left(\frac{x + 1}{x - 3}\right)^{4}$ (j) $f(x) = \sin^{3}(2x) + \cos^{3}(x)$ (k) $g(x) = \sin^{3}(2x) \cdot \cos^{3}(x)$ (l) $h(x) = \sqrt{\sin^{3}(2x) + \cos^{3}(x)}$
- 2. Suppose h(x) = f(g(x)) and r(x) = g(f(x)), and we are given the information in the following table

x	f(x)	f'(x)	g(x)	g'(x)
-4	0	-5	0	5
-2	2	-2	4	3
0	4	2	6	1
2	-6	1	6	-1
4	-4	3	4	-3
6	0	5	0	-5

- (a) Find h'(-2) and h'(2).
- (b) Find r'(-2) and r'(4).
- (c) Suppose s(x) = f(g(f(x))). Find s'(0).
- 3. Find dy/dx for each of the following:
 - (a) $y = \tan^{3}(\sin x)$ (b) $x = t^{3} - 3t^{2} + 1$, $y = \frac{1}{t\sqrt{t}}$ (c) $x = 2\sin(3t)$, $y = \cos(3t)$ (d) $x = 2\sin^{2}(3t)$, $y = \cos^{3}(3t)$
- (e) $x = r \sin(\theta \sin \theta), y = r(1 \cos(\theta))$ with r being a constant.
- (f) $y = A \cos(\omega x + \delta)$ Here A, ω, δ are constants.

- 4. Find solutions to each of the following, as instructed.
 - a) Find an equation of the tangent line to the curve $x = 2\sin(t) + 5$, $y = 4 5\cos(t)$ at $t = \frac{5\pi}{4}$.
 - b) Find the (x, y) coordinates of the point(s) where the curve $x = 2\sin(t) + 5$, $y = 4 5\cos(t)$ has horizontal tangent lines.
 - c) Find an equation of the tangent line to the curve $x = \cos(\theta) \sin(2\theta)$, $y = \sin(\theta) + \cos(2\theta)$ at $\theta = 2$.
 - d) Show that the curve $x = \sin t$, $y = \sin(t + \sin t)$ has two tangent lines at the origin, and find their equations.