Worksheet 7

- 1. Solve the following trigonometric equations:
 - (a) $\cos x 1 = 0$
 - (b) $\cos^2 x 1 = 0$
 - (c) $2\cos^2 x 1 = 0$
 - (d) $\cos^2 x 2\cos x + 1 = 0$
 - (e) $\cos x = \sin x$
 - (f) $\cos^3 x = \cos x$
 - (g) $\sin x 2\sin x \cos x = 0$
 - (h) $\cos^2 x = 1 \sin x$
- 2. Differentiate each of the following functions and simplify:

(i)
$$f(x) = 5x\sqrt{x} - 2x^{5/2} + \sqrt{x}$$

(ii) $g(x) = \frac{5x\sqrt{x} - 2x^{5/2} + \sqrt{x}}{x}$ (Hint: Avoid using the quotient rule!)
(iii) $h(x) = \frac{5x\sqrt{x} - 2x^{5/2} + \sqrt{x}}{x\sqrt{x}}$ (Hint: See previous hint!)
(iv) $f(t) = \frac{t^2 + 1}{t^2 - 1}$
(v) $g(t) = \frac{e^t}{3 + t^2}$
(vi) $h(t) = \frac{e^t}{3 + te^t}$
(vii) $r(t) = (t^3 - 5t)e^t$
(viii) $f(u) = (u^4 - 4u^3 + 8u - 3)(2u^3 - 3u + 4)$
(ix) $g(u) = \frac{(u^4 - 3)(2u^3 + 4)}{\sqrt{u}}$ (Hint: Avoid the QR!)
(x) $f(x) = e^x + \frac{x^e + 1}{x^{\pi}}$

- 3. Let g(x) be a differentiable function. Find f'(x) for each of the following in terms of g(x) and g'(x):
 - (a) $f(x) = e^x g(x)$ (b) $f(x) = \frac{3x - 1}{g(x)}$ (c) $f(x) = g(x)(\sqrt{x} - 8x^2)$ (d) $f(x) = g(x)\left(\frac{\sqrt{x} - 8x^2}{x}\right)$

- 4. Find solutions to each of the following, as instructed.
 - a) Find an equation of the tangent line to the curve $y = e^x(x+1)$ at x = 0.
 - b) Find the point(s) where the curve $y = \frac{x}{x^2 + 4}$ has horizontal tangent lines.
 - c) Given $f(x) = x^4 e^x$, find the intervals where the graph of f is concave up.
 - d) Find an equation of the tangent line to the curve $y = \frac{1-x}{1+x}$ at x = 3.
 - e) Find equations of both tangent lines to the curve $y = \frac{1-x}{1+x}$ that are parallel to the line 2x + y = 3.
 - f) Find an equation of the tangent line to the curve $y = e^x$ that passes through the origin.
 - g) Find the equation of the line(s) tangent to the graph of $y = 3x^2 5$ and parallel to the line 7x y = -1.