Worksheet 6

1. Interpret, with correct units and context, the meaning of the derivative in each of the following applications:
(a) C is the cost in dollars for producing x gallons of a soft drink. What does $C^{\prime}(x)$ represent? What is the meaning of $C^{\prime}(10)=7$?
(b) A is the amount of a chemical (in mg.) present x minutes after the start of a reaction. What does $A^{\prime}(x)$ represent? What is the meaning of $A^{\prime}(3)=-4$?
(c) F is the fuel consumption (in MPG) of a car when its speed is x miles per hour. What does $F^{\prime}(x)$ represent? What is the meaning of $F^{\prime}(14)=3$?
(d) R is the rate of gun-related deaths in a state (per 100,000 of the population), when x percent of adults own firearms. What does $R^{\prime}(x)$ represent? What is the meaning of $R^{\prime}(14.7)=6.3$?
2. Shown below are graphs of the derivative $y=f^{\prime}(x)$ for two different functions. For each case, sketch a qualitatively reasonable graph of $f(x)$.
(a)

(b)

3. Give short answers to each of the following, as instructed.
(a) Indicate true or false, with reason: "If $f^{\prime}(a)$ exists, then $\lim _{x \rightarrow a} f(x)$ exists."
(b) Indicate true or false, with reason: "If $\lim _{x \rightarrow 3} f(x)=f(3)$, then f is differentiable at $x=3$."
(c) Sketch the graph of a function that is increasing at a decreasing rate. Also, sketch the graph of one that is decreasing at an increasing rate.
(d) Suppose $f^{\prime}(x)$ exists for all x in (a, b). Which of the following statements is guaranteed to be true? (You may pick more than one correct answer.)
i) $f(x)$ is continuous on (a, b).
ii) $f(x)$ is defined for all x in (a, b).
iii) $\lim _{x \rightarrow c} f(x)$ exists for all c in (a, b).
iv) The graph of $f(x)$ is smooth on (a, b). [i.e., it has no kinks or corners]
v) $f^{\prime}(x)$ is differentiable on (a, b).
4. The graph of some function $g(x)$ is shown below. Find all the x values where
(a) g^{\prime} is increasing.
(b) g^{\prime} is decreasing.
(c) $g^{\prime \prime}>0$.
(d) $g^{\prime \prime}<0$.

5. Shown below are graphs of the derivative $y=f^{\prime}(x)$ of four different continuous functions. Based on these graphs, answer the following questions for each function (assume the graphs continue to infinity on both ends in the direction shown):
i) On what interval(s) is $f(x)$ increasing, and on what interval(s) is it decreasing? Give reasons.
ii) At what x-values does f have local minimum and maximum values? Reason?
iii) On what interval(s) is f concave up/down?
iv) Sketch a qualitatively reasonable graph of $f(x)$, assuming $f(0)=0$.
(a)

(b)

(c)

(d)

6. (i) In graph (a) of the previous question, is there enough information to tell whether $f(3)$ is less than, or greater than $f(1)$?
(ii) Similarly, in graph (b) of the previous question, is there enough information to tell whether $f(3)$ is less than, or greater than $f(1)$?
(iii) In graph (a) of the previous question, is there enough information to tell whether $f(3.5)$ is less than, or greater than $f(1)$?
