Worksheet 2

1. Solve each of the following for x
(a) $\frac{1}{2} \log \left(3 x^{2}+4\right)-\log (x)=\log (2)$
(g) $\quad \log _{5}(x+3)+\log _{5}(x-1)=1$
(b) $\ln (x+2)-\ln (x-2)=\ln (2)+\ln (x)$
(h) $5^{x} \cdot 3^{x-1}=7^{2-x}$
(c) $\ln x^{2}=[\ln x]^{2}$
(d) $5^{x-1}-2^{x}=0$
(e) $\left(\frac{1}{4}\right)^{9 x-5}=32^{x+8}$
(f) $2 e^{2 x}-5 e^{x}+2=0$
2. Find the inverse of the following functions
(a) $\quad f(x)=\frac{3 x}{1-4 x}$
(b) $y=\frac{3 e^{x}}{e^{x}-2}$
(c) $g(x)=\ln \left[\frac{x-1}{x+1}\right]$
(d) $\quad h(x)=\sqrt{4-e^{-2 x}}$
(e) $f(x)=\frac{2 x-3}{4-5 x}$
3. Medical professionals sometimes use iodine-131, a radiocative substance, to diagnose certain conditions of the thyroid gland. The formula for the proportion P of iodine131 remaining in a patient's system t days after receiving the substance is given by $P=e^{(\ln (1 / 2) / 8) t}$.
(a) Find the inverse of this function and explain its meaning.
(b) How long does it take for the proportion of iodine to drop to 10% of the original dose?
