Worksheet 2

- 1. Solve each of the following for x
 - (a) $\frac{1}{2}\log(3x^2+4) \log(x) = \log(2)$ (g) $\log_5(x+3) + \log_5(x-1) = 1$
 - (b) $\ln(x+2) \ln(x-2) = \ln(2) + \ln(x)$
 - (c) $\ln x^2 = [\ln x]^2$ (d) $5^{x-1} - 2^x = 0$ (e) $\left(\frac{1}{4}\right)^{9x-5} = 32^{x+8}$ (f) $2e^{2x} - 5e^x + 2 = 0$

- (h) $5^x \cdot 3^{x-1} = 7^{2-x}$

- 2. Find the inverse of the following functions
 - (a) $f(x) = \frac{3x}{1 4x}$ $3e^x$ (1)

(b)
$$y = \frac{1}{e^x - 2}$$

(c) $g(x) = \ln\left[\frac{x-1}{x+1}\right]$

(d)
$$h(x) = \sqrt{4 - e^{-2x}}$$

(e)
$$f(x) = \frac{2x-5}{4-5x}$$

- 3. Medical professionals sometimes use iodine-131, a radiocative substance, to diagnose certain conditions of the thyroid gland. The formula for the proportion P of iodine-131 remaining in a patient's system t days after receiving the substance is given by $P = e^{(\ln(1/2)/8)t}.$
 - (a) Find the inverse of this function and explain its meaning.
 - (b) How long does it take for the proportion of iodine to drop to 10% of the original dose?