Worksheet 12

1. Find all the critical points of each of the following functions:
(a) $y=x^{3}-3 x+27$
(f) $f(x)=\frac{e^{-x}}{1+x^{2}}$
(b) $f(x)=\left|x^{2}-9\right|$
(g) $y=|x|\left(x^{2}-4\right)$
(c) $G(t)=\sqrt[3]{25-x^{2}}$
(h) $y=x\left|x^{2}-4\right|$
(d) $y=2 \sin x-x$
(i) $g(t)=2 \sin t \cos t$
2. Each of the following questions requires sketching the graph of a function f that has all the indicated properties:
(a) f is defined on $[-2,5]$, has no local extreme values, but does have absolute minimum and maximum values.
(b) f is defined on $[-2,5]$, has no absolute extremes, but does have local minimum and maximum.
(c) f is defined on $[-2,5]$, has two critical points, but has neither local nor absolute extremes.
(d) f is differentiable everywhere, with $f^{\prime}(1)=f^{\prime}(4)=0, f^{\prime \prime}(1)=-2$ and $f^{\prime \prime}(4)=0$.
3. Find all the local and absolute extreme values of the following functions on the indicated interval using calculus techniques.
a) $f(x)=\left|x^{2}-9\right|$ on $[-4,5]$.
b) $F(t)=t^{3}-t^{2}-t$ on $[-1,2]$.
c) $y=|x|\left(x^{2}-4\right)$ on $[-3,3]$.
d) $f(x)=\left(x^{2}-1\right) e^{x}$ on $[-4,2]$.
e) $f(x)=\left(x^{2}-1\right) e^{x}$ on $[-4,2]$.
f) $f(x)=(x+3)^{4}(x-2)^{3}$ on $[-4,2]$.
g) $f(x)=\left(x^{2}-1\right)^{3}$ on $(-\infty, \infty)$.
4. Find the following limits:
a) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}$
b) $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x}$
c) $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{x}$
d) $\lim _{x \rightarrow 0^{+}} x(\ln x)^{2}$
e) $\lim _{x \rightarrow 0}(1+x)^{1 / x}$
f) $\lim _{x \rightarrow 0}\left(1+x^{2}\right)^{1 / x}$
5. Solve each of the following as instructed:
a) Find the intervals on which the function $y=e^{x|x-2|}$ is increasing, and on which it is decreasing.
b) Suppose f and g are two functions with linear approximations L_{1} and L_{2} as shown.
Find $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$.
Hint: Is it indeterminate?

c) True or false: Suppose $f^{\prime \prime}(x)<0$ for all x near the point $x=3$. Then the linear approximation of f at $x=3$ will overestimate the value of $f(2.9)$.
d) Suppose f is differentiable on the interval $[1,4]$, and suppose $0 \leq f^{\prime}(x) \leq 5$ for all x in that interval. If $f(1)=2$, what are the minimum and maximum possible values of $f(4)$?
e) State the Mean Value Theorem in mathematically precise language, followed by a brief explanation of what it means in everyday language. Include a graph, with labels, to illustrate your claims.
