Worksheet 14

1. Differentiate with respect to x and simplify:
(a) $g(x)=\sqrt{1-e^{2 x}}$
(b) $f(x)=\frac{5 x-x^{2}}{\sqrt[3]{x}}$
(e) $s(x)=\int_{-2}^{x^{2}} e^{t^{2}-3 t} d t$
(c) $h(x)=(\cos x)^{\sqrt{x}}$
(f) $y=\ln \sqrt{2-3 x}$
(d) $r(x)=\int_{3}^{x} e^{t^{2}-3 t} d t$
(g) $y=\ln \frac{(2-3 x)^{3}}{(3-4 x)^{5}}$
2. Evaluate the following limits
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{x-1}$
(f) $\lim _{x \rightarrow \infty} \frac{1-e^{x}}{1+e^{x}}$
(b) $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}$
(g) $\lim _{x \rightarrow-\infty} \frac{1-e^{x}}{1+e^{x}}$
(c) $\lim _{x \rightarrow-3}\left[\frac{1}{3+x}-\frac{6}{9-x^{2}}\right]$
(d) $\lim _{x \rightarrow \infty}(x-1) e^{x}$
(h) $\lim _{x \rightarrow 0} \frac{\cos ^{2} x-1}{x^{2}}$
(e) $\lim _{x \rightarrow-\infty}(x-1) e^{x}$
(i) $\lim _{x \rightarrow 0} x\left(\sin ^{3} x\right)$
3. Find the absolute minimum and maximum values of the function $g(x)=\left(3-x^{2}\right) e^{x}$ on the interval $[0,2]$ using calculus techniques.
4. Find the equation of the line tangent to the graph of $\ln (x)+\ln (y)=y^{3}-1$ at the point $(1,1)$.
5. Find the equation of the line tangent to the graph of $F(x)=\int_{1}^{x^{2}} \sqrt[3]{2 t-1} d t$ at $x=1$.
6. A rectangular display area containing 800 square feet is to be enclosed outside a shopping mall. Three sides of the enclosure are to be built using fencing that costs $\$ 20$ per foot. The 4th side is to be made using more expensive fencing that costs $\$ 30$ per foot. Find the dimensions that would minimize total cost, and find the minimum cost. [Remember: Must prove that your answer is the abs. min.]
7. Given: $\sum_{i=1}^{n}\left(\sqrt{1+i \frac{8}{n}}\right) \frac{8}{n}$
(a) Compute the sum for $n=4$.
(b) This represents the right Riemann sum of a function $h(x)$ over an interval. Find h and the interval.
8. Evaluate the following integral: $\int_{0}^{1} \frac{5 x-x^{2}}{\sqrt[3]{x}} d x$
9. Let $F(x)=\int_{0}^{x} f(t) d t$ on the interval $[0,4]$, where the graph of f is shown below.
(a) Is $F(2)$ positive or negative? Reason?
(b) On what intervals is $F(x)$ increasing? Decreasing?
(c) At what values of x does F have local minimum or maximum values? Reason?
(d) On what intervals is F con-
 cave up/down? Reason?
(e) At what values of x does F have absolute minimum or maximum values? Reason? [Hint: Do you know the critical points, end points? Can you quantify F values at those points?]
10. (a) Give a mathematically precise definition of the definite integral $\int_{a}^{b} f(x) d x$.
(b) Give a mathematically precise statement of both parts of the Fundamental Theorem of Calculus.

One more like (9) for practice:
11. Let $g(x)=\int_{-2}^{x} f(t) d t$, where the graph of f is shown below.
(a) Evaluate $g(7)$. Show reasoning.
(b) Evaluate $g(0)$. Show reasoning.
(c) Evaluate $g^{\prime}(1)$. Explain reasoning.
(d) On the interval $(-4,10)$ where is g increasing? Decreasing?
(e) On what intervals is g concave up/down?
(f) Find the absolute minimum and maximum values of g on the interval $[-4,10]$.

Note that we want actual function values - not merely the x-locations where they occur. [Hint: Do you know the critical points, end points? Can you compute g at those points?]

