Woksheet on limits, continuity, and rates of change

1. Find the indicated limits using algebraic methods:
(a) $\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{2}{x^{2}-1}\right)$
(e) $\lim _{x \rightarrow 2}\left(\frac{x^{2}}{4-x^{2}}+\frac{1}{x-2}\right)$
(b) $\lim _{x \rightarrow-1} \frac{x^{3}+x^{2}-x-1}{x+1}$
(f) $\lim _{x \rightarrow-2} f(x)$ and $\lim _{x \rightarrow 2} f(x)$
for the function $f(x)=\frac{\left|x^{2}-4\right|}{x+2}$
(c) $\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{x^{2}-81}$
(g) Find $\lim _{x \rightarrow-2} 2 x+|x+2|$
(d) $\lim _{x \rightarrow 0} \frac{\sqrt{x}}{\sqrt{1+\sqrt{x}}-1}$
(h) $\lim _{x \rightarrow 1} \frac{5 x^{2}-5}{|x-1|}$
2. The graphs of two functions f and g are given below. Use them to evaluate each of the following limits (give a mathematical justification for your answers):
(a) $\lim _{x \rightarrow-1}[f(x)+g(x)]$
(b) $\lim _{x \rightarrow-1}[f(x) \cdot g(x)]$
(c) $\lim _{x \rightarrow 1}[f(x)+g(x)]$
(d) $\lim _{x \rightarrow 1}[f(x) \cdot g(x)]$
(e) $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$
(f) $\lim _{x \rightarrow 0} \frac{f(x)+2}{g(x)}$

3. Consider the function

$$
f(x)= \begin{cases}\frac{6}{x-4}, & \text { if } x<-2 \\ 5-3 x, & \text { if }-2 \leq x \leq 1 \\ \frac{x-1}{\sqrt{x}-1}, & \text { if } x>1\end{cases}
$$

Find the following limits: (a) $\lim _{x \rightarrow-2} f(x), \quad$ (b) $\lim _{x \rightarrow 1} f(x)$.
4. Given the same function as in the previous exercise, find all the values of x for which f is continuous. Use the mathematical definition of continuity to justify all claims.
5. Determine all the values of a that would make the following function continuous for all x

$$
f(x)= \begin{cases}2, & \text { if } x<3 \\ a^{2} x+a, & \text { if } x \geq 3\end{cases}
$$

6. Find: (a) $\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right)$
(b) $\lim _{x \rightarrow 0} x^{2} e^{\cos \left(\frac{1}{x}\right)}$
7. In the year 2011, the United States spent about $\$ 800$ billion on its military and warfare operations (higher than the military spending of the next 17 countries combined). The following function, based on actual data from the U.S. government, is a model for military spending in the U.S. since the year $2000(t$ denotes the number of years after 2000, and f the military spending in billions of dollars)

$$
f(t)=\frac{300}{0.3+0.7 e^{-0.2 t}}
$$

(a) Find the average change in military spending over the time period beginning with the year 2011 and lasting: 2 years, 1 year, and 0.5 year. In other words, we want to compute three separate averages here.
(b) From these averages, estimate the slope of the tangent line to the graph of $f(t)$ when the year is 2011. Find the equation of the tangent line.
8. Use the Intermediate Value Theorem to show the following equations have a root. Be sure to check that the theorem's hypotheses are satisfied before applying it.
(a) $x^{2}+\sin (\pi x)=3$
(b) $x \ln (x+1)=4 x-2$

Solution outline/grading notes

1. Find the indicated limits using algebraic methods:
(a) $\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{2}{x^{2}-1}\right)$:

Common denominator \& reduce to $\lim _{x \rightarrow 1}\left(\frac{1}{x+1}\right)=1 / 2$
(b) $\lim _{x \rightarrow-1} \frac{x^{3}+x^{2}-x-1}{x+1}$:

Factor \& cancel to get $\lim _{x \rightarrow-1}(x-1)(x+1)=0$
(c) $\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{x^{2}-81}$:

Use $(3+\sqrt{x})$ to rationalize $\&$ simplify to $\lim _{x \rightarrow 9} \frac{-1}{(9+x)(3+\sqrt{x})}=-\frac{1}{108}$
(d) $\lim _{x \rightarrow 0} \frac{\sqrt{x}}{\sqrt{1+\sqrt{x}}-1}$:

Use $(\sqrt{1+\sqrt{x}}+1)$ to rationalize $\&$ reduce to $\lim _{x \rightarrow 0}(\sqrt{1+\sqrt{x}}+1)=2$
(e) $\lim _{x \rightarrow 2}\left(\frac{x^{2}}{4-x^{2}}+\frac{1}{x-2}\right)$:

Common denominator, factor \& simplify to $\lim _{x \rightarrow 2}\left(\frac{-(x+1)}{x+2}\right)=-3 / 4$
(f) $\lim _{x \rightarrow-2} f(x)$ and $\lim _{x \rightarrow 2} f(x)$ for the function $f(x)=\frac{\left|x^{2}-4\right|}{x+2}$:

Take left/right limits \& get $\lim _{x \rightarrow-2^{-}} f(x)=-4, \lim _{x \rightarrow-2^{+}} f(x)=4, \lim _{x \rightarrow-2} f(x)=$ DNE
For $x \rightarrow 2, \lim _{x \rightarrow 2^{-}} f(x)=0, \lim _{x \rightarrow 2^{+}} f(x)=0$. Thus, $\lim _{x \rightarrow 2} f(x)=0$.
(g) Find $\lim _{x \rightarrow-2} 2 x+|x+2|$:

Take left/right limits \& get $\lim _{x \rightarrow-2^{-}} f(x)=-4, \lim _{x \rightarrow-2^{+}} f(x)=-4, \lim _{x \rightarrow-2} f(x)=-4$
Answer $=-4$
(h) $\lim _{x \rightarrow 1} \frac{5 x^{2}-5}{|x-1|}$:

Take left/right limits \& get $\lim _{x \rightarrow 1^{-}} \frac{5\left(x^{2}-1\right)}{-(x-1)}=\lim _{x \rightarrow 1^{-}}-5(x+1)=-10$
$\lim _{x \rightarrow 1^{+}} \frac{5\left(x^{2}-1\right)}{(x-1)}=\lim _{x \rightarrow 1^{+}} 5(x+1)=10$. Therefore, $\lim _{x \rightarrow 1} \frac{5 x^{2}-5}{|x-1|}=\mathrm{DNE}$
2. Answers only:
(a) $\lim _{x \rightarrow-1}[f(x)+g(x)]=0$
(b) $\lim _{x \rightarrow-1}[f(x) \cdot g(x)]=-1$
(c) $\lim _{x \rightarrow 1}[f(x)+g(x)]=1$
(d) $\lim _{x \rightarrow 1}[f(x) \cdot g(x)]=-2$
(e) $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=-1.5$
(f) $\lim _{x \rightarrow 0} \frac{f(x)+2}{g(x)}=-3.5$
3. Must consider left/right limits for each of the indicated problems. Answers:
(a) $\lim _{x \rightarrow-2^{-}} f(x)=-1, \quad \lim _{x \rightarrow-2^{+}} f(x)=11, \quad \lim _{x \rightarrow-2} f(x)=$ DNE
(b) $\lim _{x \rightarrow 1^{-}} f(x)=2, \quad \lim _{x \rightarrow 1^{+}} f(x)=2, \quad \lim _{x \rightarrow 1} f(x)=2$
4. f is continuous on the intervals: $x<-2,-2<x<1, x>1$ by continuity theorems. f is discontinuous at $x=-2$ because its limit is undefined there.
f is continuous at $x=1$ because $\lim _{x \rightarrow 1} f(x)=f(1)=2$.
So, the answer is: f is continuous for all x except $x=-2$.
5. The function will be continuous at $x=3$ if $\lim _{x \rightarrow 3} f(x)=f(3)$. In order to make that happen we must have: $2=3 a^{2}+a$.
Thus, $a=2 / 3$ and $a=-1$ will both work to make f continuous for all x.
6. (a) $\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right)$

First, show that $-x^{4} \leq x^{4} \sin \left(\frac{1}{x}\right) \leq x^{4}$ for all x.
Then use the squeeze theorem and get $\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right)=0$
(b) $\lim _{x \rightarrow 0} x^{2} e^{\cos \left(\frac{1}{x}\right)}$

Show that $\frac{x^{2}}{e} \leq x^{2} e^{\cos \left(\frac{1}{x}\right)} \leq x^{2} e$ for all x.
Then use the squeeze theorem and get $\lim _{x \rightarrow 0} x^{2} e^{\cos \left(\frac{1}{x}\right)}=0$

