Solution Outlines for Chapter 9

6: Let \(H = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \mid a, b, d \in \mathbb{R}, ad \neq 0 \right\} \). Is \(H \) a normal subgroup of \(GL(2, \mathbb{R}) \)?

No; Show directly by counter example or by multiplying the general case,
\[
\left[\begin{array}{cc} f & g \\ h & j \end{array} \right] \left[\begin{array}{cc} a & b \\ 0 & d \end{array} \right] \left(\left[\begin{array}{cc} f & g \\ h & j \end{array} \right] \right)^{-1},
\]
to see it is not contained in \(H \).

8: Viewing \(< 3 > \) and \(< 12 > \) as subgroups of \(\mathbb{Z} \), prove that \(< 3 > / < 12 > \) is isomorphic to \(\mathbb{Z}_4 \). Similarly, prove that \(< 8 > / < 48 > \) is isomorphic to \(\mathbb{Z}_6 \).

Generalize to arbitrary integers \(k \) and \(n \).

First, notice \(< 3 > = \{ \ldots -12, -9, -6, -3, 0, 3, 6, 9, 12, \ldots \} \) and \(12 > = \{ \ldots -24, -12, 0, 12, 24, \ldots \} \). Now \(< 3 > / < 12 > \) looks like \(\{ -9+ < 12 >, -6+ < 12 >, -3+ < 12 >, < 12 >, 3+ < 12 >, 6+ < 12 >, 9+ < 12 > \} \) since multiples of 12 will be absorbed by \(< 12 > \). Recall \(aH = bH \) if and only if \(b^{-1}a \in H \). Here this tells me that because \(-3)+ -9 = -12, 3+ < 12 > = -9+ < 12 > \). Similarly, \(-3+ < 12 > = 9+ < 12 > \), and \(-6+ < 12 > = 6+ < 12 > \). So, \(< 3 > / < 12 > = \{ < 12 >, 3+ < 12 >, 6+ < 12 >, 9+ < 12 > \} \). Notice that \(3+ < 12 > \) has order 4 and hence generates all of \(< 3 > / < 12 > \). Thus, \(< 3 > / < 12 > \) is cyclic of order 4, and hence isomorphic to \(\mathbb{Z}_4 \).

Now, consider \(< 8 > / < 48 > \). Similar to before, it is clear that this group consists of \(\{ < 48 >, 8+ < 48 >, 16+ < 48 >, 24+ < 48 >, 32+ < 48 >, 40+ < 48 > \} \). Notice that still similar to before \(8+ < 48 > \) is a generator of the quotient group and that the group has order 48 divided by 8, or 6. Hence, it is isomorphic to \(\mathbb{Z}_6 \).

In general, suppose \(k \) divides \(n \). Then \(< k > / < n > \) is of the form \(\{ < n >, k+ < n >, 2k+ < n >, \ldots, (n-k)+ < n > \} \). This is clearly cyclic with generator \(k+ < n > \) and has order \(\frac{n}{k} \). Hence \(< k > / < n > \) is isomorphic to \(\mathbb{Z}_{\frac{n}{k}} \).

11: Let \(G = \mathbb{Z}_4 \oplus U(4), \) \(H = < (2, 3) >, \) and \(K = < (2, 1) > \). Show that \(G/H \) is not isomorphic to \(G/K \). (This shows that \(H \approx K \) does not imply that \(G/H \approx G/K \).)

For clarity, we write out each of the groups: \(G = \{(0, 1), (1, 1), (2, 1), (3, 1), (0, 3), (1, 3), (2, 3), (3, 3)\}, \)
\(H = \{(2, 3), (0, 1)\}, \) and \(K = \{(2, 1), (0, 1)\}. \) Since \(H \) and \(K \) both have order 2, they are both isomorphic to \(\mathbb{Z}_2 \). Straight forward calculation shows,
\[
G/H = \{ H = (0, 1)H = (2, 3)H, (1, 1)H = (3, 3)H, (2, 1)H = (0, 3)H, (3, 1)H = (1, 3)H \}
\]
and
\[
G/K = \{ K = (0, 1)K = (2, 1)K, (1, 1)K = (3, 1)K, (0, 3)K = (2, 3)K, (3, 3)K = (1, 3)K \}
\]
. Notice that each has 4 elements as expected since \(4 \times 2 = 8 \).
Consider \((1,3)H: <(1,3)H >= \{(1,3)H, (2,1)H, (3,3)H, (0,1)H\} = G/H\). So, \(G/H\) is cyclic of order 4, and hence is isomorphic to \(Z_4\).

However, observe that \(G/K\) is not cyclic since \(<(0,1)K >= \{K\}, <(1,1)K >= \{(1,1)K, (2,1)K\}, <(0,3)K >= \{(0,3)K, (0,1)K\}\) and \(<(3,3)K >= \{(3,3)K, (2,1)K\}\). In fact, we recognize that this structure is the Klein-4 group, \(Z_2 \oplus Z_2\). Hence \(G/H \neq G/K\).

13: Prove that a factor group of an Abelian group is Abelian.

Let \(G\) be an Abelian group and consider its factor group \(G/H\), where \(H\) is normal in \(G\). Let \(aH\) and \(bH\) be arbitrary elements of the quotient group. Then \(aHbH = (ab)H = (ba)H = bHaH\) because \(G\) is Abelian. Hence the factor group is also Abelian.

14: What is the order of the element \(14+ < 8 >\) in the factor group \(Z_{24}/ < 8 >\)?

For completeness, observe \(<8> = \{8, 16, 0\}\) and \(Z_{24}/ < 8 > = \{<8>, 1+ <8>, 2+ <8>, 3+ <8>, 4+ <8>, 5+ <8>, 6+ <8>, 7+ <8>\}. Now let’s observe \(14+ <8>: \)
\[14+ <8> + (14+ <8>) = 28+ <8> = 4+ 8, (14+ <8>) + (4+ <8>) = 18+ <8> = 2+ <8>, (14+ <8>) + (2+ <8>) = 16+ <8> = <8>\]

Hence the order of \(14 + 8\) is 4.

16: Recall that \(Z(D_6) = \{e, r^3\}\). What is the order of the element \(rZ(D_6)\) in the factor group \(D_6/Z(D_6)\)?

Notice that problem 16 here is rewritten in terms of generators and relations. Now it is clear that the order of \(rZ(D_6)\) is 3 since \(r^3 \in Z(D_6)\).

17: Let \(G = Z/ <20>\) and \(H = <4> / <20>\). List the elements of \(H\) and \(G/H\).

Observe: \(<4> = \{\ldots, -8, -4, 0, 4, 8, 12, \ldots\}\) and \(<20> = \{\ldots, -40, -20, 0, 20, 40, 60, \ldots\}\). Hence \(H = \{<20>, 4+ <20>, 8+ <20>, 12+ <20>, 16+ <20>\} \approx Z_5\).

Now notice that \(G = \{<20>, 1+ <20>, 2+ <20>, \ldots, 19+ <20>\} \approx Z_{20}\). So \(G/H = \{0+ <20> + H, 1+ <20> + H, 2+ <20> + H, 3+ <20> + H\} \approx Z_4\).

19: What is the order of the factor group \((Z_{10} \oplus U(10))/ <(2,9)>)?

The order of the factor group is \(\left|\frac{Z_{10} \oplus U(10)}{<(2,9)>}\right| = \frac{10 \times 4}{\text{lcm}(2,|9|)} = \frac{40}{18} = 4\).

21: Prove that an Abelian group of order 33 is cyclic.

Let \(G\) be an Abelian group of order 33. By Theorem 9.5, there exists an element of \(G\), say \(a\), such that \(|a| = 3\) and an element of \(G\), say \(b\), such that \(|b| = 11\). Since \(G\) is Abelian, \((ab)^{33} = a^{33}b^{33} = e\) so the order of \(ab\) divides 33. However, it is clear \(|ab|\) is not 1, 3, or 11. Hence \(|ab| = 33\) so \(ab \in G\) generates \(G\), and \(G\) is cyclic.
23: Determine the order of \((\mathbb{Z} \oplus \mathbb{Z})/ < (4, 2) >\). Is the group cyclic?

Notice that \((1, 1)+ < (4, 2) >\) has infinite order [Why? Suppose it is of finite order, say \(n\). Then \((n, n) \in < (4, 2) >\) which means \((n, n) = k(4, 2)\) for some \(k\). So \(k = n/4 = n/2\) or \(4n = 2n\) which means \(n = 2n\) so \(n = 0\) since \(n\) is an integer.]. Hence the group \((\mathbb{Z} \oplus \mathbb{Z})/ < (4, 2) >\) also has infinite order.

If the quotient group is cyclic, it must be isomorphic to \(\mathbb{Z}\) (from previous work) so every non-identity element should have infinite order. However, \((6, 3)+ < (4, 2) >\) has order 2. Hence, it is not cyclic.

24: The group \((\mathbb{Z}_4 \oplus \mathbb{Z}_{12})/ < (2, 2) >\) is isomorphic to one of \(\mathbb{Z}_8\), \(\mathbb{Z}_4 \oplus \mathbb{Z}_2\), or \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2\). Determine which one by elimination.

Observe that \(H = < (2, 2) > = \{(2, 2), (0, 4), (2, 6), (0, 8), (2, 10), (0, 0)\}\) (which has order 6 as expected). Let \(G = (\mathbb{Z}_4 \oplus \mathbb{Z}_{12})/ < (2, 2) >\). Then \(G = \{H, (1, 0)H, (0, 1)H, (1, 1)H, (0, 2)H, (0, 3)H, (3, 0)H, (1, 3)H\}\) and these cosets have orders 1, 2, 4, 4, 2, 4, 4, and 2 respectively. Hence, \(G\) is not cyclic and not isomorphic to \(\mathbb{Z}_8\). Further, since there is an element of order 4, \(G\) is not isomorphic to \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2\). Hence, \(G \cong \mathbb{Z}_4 \oplus \mathbb{Z}_2\).

25: Let \(G = U(32)\) and \(H = \{1, 31\}\). The group \(G/H\) is isomorphic to one of \(\mathbb{Z}_8\), \(\mathbb{Z}_4 \oplus \mathbb{Z}_2\), or \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2\). Determine which one by elimination.

First, we know that the order of \(U(32) = 2^5 - 2^4 = 16\) so \(G/H\) has order \(16/2 = 8\) as anticipated.

Consider \(3H = \{3, 29\} \in G/H: < 3H > = \{3H, 9H, 27H, 17H, 19H, 25H, 11H, H\}\) so the order of \(3H\) is 8. Hence \(G/H = < 3H > \approx \mathbb{Z}_8\).

27: Let \(G = U(16), H = \{1, 15\}\) and \(K = \{1, 9\}\). Are \(H\) and \(K\) isomorphic? Are \(G/H\) and \(G/K\) isomorphic?

It is obvious that \(H \approx K \approx \mathbb{Z}_2\). Now, we need to check if \(G/H\) and \(G/K\) are isomorphic. We know that each has order 4 and that there are only two such groups. Consider \(3H: < 3H > = \{3H, 9H, 11H, H\}\) so 3 \(H\) generates \(G/H\) and \(G/H \cong \mathbb{Z}_4\). Now observe \(G/K: < K > = \{K\}, < 3K > = \{3K, K\}, < 5K > = \{5K, K\}\) and \(< 7K > = \{7K, K\}\). Thus \(G/K \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2\) and \(G/K \not\cong G/H\).

37: Let \(G\) be a finite group and let \(H\) be a normal subgroup of \(G\). Prove that the order of the element \(gH\) in \(G/H\) must divide the order of \(g\) in \(G\).

Let \(|g| = n\). Then \((gH)^n = g^nH = eH = H\) so \(|gH|\) must divide \(n\).

38: Let \(H\) be a normal subgroup of \(G\) and let \(a\) belong to \(G\). If the element \(aH\) has order 3 in the group \(G/H\) and \(|H| = 10\), what are the possibilities for the order of \(a\)?
First, $|G| = |aH| 	imes |H| = 3 \times 10 = 30$. So $|a|$ divides 30. But we also know, by the previous problem, that 3 also has to divide $|a|$. Hence the possible orders for a are 3, 6, 15, and 30.

40: Let ϕ be an isomorphism from a group G onto a group \bar{G}. Prove that if H is a normal subgroup of G, then $\bar{\phi}(H)$ is a normal subgroup of \bar{G}.

Let H be normal in G. We want to show $y\phi(H)y^{-1} \subseteq \phi(H)$ for all $y \in \bar{G} = \phi(G)$. Since $y \in \phi(G)$, there exists an $x \in G$ such that $y = \phi(x)$. Thus $y\phi(H)y^{-1} = \phi(x)\phi(H)(\phi(x))^{-1} = \phi(xHx^{-1}) = \phi(H)$ since H is normal in G, and we are done.

42: An element is called a square if it can be expressed in the form b^2 for some b. Suppose that G is an Abelian group and H is a subgroup of G. If every element of H is a square and every element of G/H is a square, prove that every element of G is a square. Does your proof remain valid when “square” is replaced by “nth power” where n is any integer?

Let G be an Abelian group, H be a subgroup of G and every element of both H and G/H be a square. Suppose $g \in G$. Since $g \in G$, $gH \in G/H$. But all elements of G/H are squares so there exists an $aH \in G/H$ such that $gH = (aH)^2 = a^2H$. By properties of cosets, we now have that $(a^2)^{-1}g \in H$. But every element in H is a square so there exists a $b \in H$ such that $(a^2)^{-1}g = b^2$. Solving for g we see $g = a^2b^2 = (ab)^2$ since G is Abelian. But this means that g is a square. Hence every element of G is a square.

Notice that this did not depend on a property of 2 so the proof remains valid when 2 is replaced by $n \in \mathbb{Z}$.

46: Show that D_{13} is isomorphic to $Inn(D_{13})$.

First, recall that $Z(D_{13}) = \{e\}$. Now, we know that $Inn(D_{13}) \approx D_{13}/Z(D_{13}) = D_{13}$.

49: Suppose that G is a non-Abelian group of order p^3 where p is prime and $Z(G) \neq \{e\}$. Prove that $|Z(G)| = p$.

First recall that $Z(G)$ is normal in G. Since G is non-Abelian, $Z(G)$ does not have order p^3. Farther, since $Z(G)$ is a non-trivial subgroup, it’s order is not 1 and divides p^3 so it has order p, or p^2.

Suppose that the order of $Z(G)$ is p^2. Then $|G/Z(G)| = p$ and hence the quotient group $G/Z(G)$ is cyclic. But this implies, by Theorem 9.3, that G is Abelian, which is a contradiction. Hence $|Z(G)| = p^2$.

50: If $|G| = pq$ where p and q are primes that are not necessarily distinct, prove that $|Z(G)| = 1$ or pq.

Let $|G| = pq$, as above. Since $Z(G)$ is a normal subgroup of G, $|Z(G)| = 1, p, q$, or pq. If G is Abelian, $|Z(G)| = pq$.
Assume G is not Abelian. Without loss of generality, let $|Z(G)| = p$. Then $|G/Z(G)| = q$, which is prime. Hence $|G/Z(G)|$ is cyclic and G is Abelian. But this is a contradiction. Hence $|Z(G)| = 1$.

51: Let N be a normal subgroup of G and let H be a subgroup of G. If N is a subgroup of H, prove that H/N is a normal subgroup of G/N if and only if H is a normal subgroup of G.

Let N be a normal subgroup of G and let H be any subgroup of G. Assume $N \subseteq H$.

“⇒” Let H/N be normal in G/N. Then for all $gN \in G/N$ and $hN \in H/N$, $(gN)(hN)(gN)^{-1} = (ghg^{-1})N \in H/N$. Thus $ghg^{-1}N = h'N$ for some $h'in H$. Hence $ghg^{-1} = h'n$ for some $n \in N$. But $h' \in H$ and $n \in H$ so $h'n \in H$. Hence $gHg^{-1} \subseteq N$. Thus H is normal in G.

“⇐” The argument above reverses.

56: Show that the intersection of two normal subgroups of G is a normal subgroup of G. Generalize.

Let H and K be normal subgroups of G. Let $x \in H \cap K$ and $g \in G$. Since $x \in H$, gxg^{-1} is in H. Similarly, gxg^{-1} is in K. Thus gxg^{-1} is in $H \cap K$ for all $g \in G$ and $x \in H \cap K$. Thus, $H \cap K$ is normal in G. Note that in a previous chapter we showed that $H \cap K$ is a subgroup of G, which completes the proof.

61: Let H be a normal subgroup of a finite group G and let $x \in G$. If $\gcd(|x|, |G/H|) = 1$, show that $x \in H$.

Let $\gcd(|x|, |G/H|) = 1$ as above. From an earlier problem we know that $|xH|$ must divide $|x|$, so $\gcd(|xH|, |G/H|)$ must also be 1. But we also know that $|xH|$ must divide $|G/H|$ because xH is an element of this group. Hence $|xH| = 1$ so $xH = H$, which implies $x \in H$.

63: If N is a normal subgroup of G and $|G/N| = m$, show that $x^m \in N$ for all x in G.

Let $x \in G$ and $|G/N| = m$. Then $x^mN = (xN)^m = (xN)^{|G/N|} = N$ so $x^m \in N$.

68: Recall that a subgroup N of a group G is called characteristic if $\phi(N) = N$ for all automorphisms ϕ of G. If N is a characteristic subgroup of G, show that N is a normal subgroup of G.

Let N be a characteristic subgroup of G. Then $\phi(N) = N$ for all automorphisms of G. In particular, $\phi_g(N) = N$ when ϕ_g is the conjugation map by g. Thus $gNg^{-1} = N$ for all $g \in G$. So N is normal in G.
Team Problem Solutions for Ch 9

10: Let $H = \{(1), (12)(34)\}$ in A_4.

a. Show that H is not normal in A_4.

We know that $(123)H = \{(123), (134)\}$ and $H(123) = \{(123), (324)\}$. These are not equal so H is not normal in A_4.

b. Referring to the multiplication table for A_4 in Table 5.1 on page 111, show that, although $\alpha_6H = \alpha_7H$ and $\alpha_9H = \alpha_{11}H$, it is not true that $\alpha_6\alpha_9H = \alpha_7\alpha_{11}H$. Explain why this proves that the left cosets of H do not form a group under coset multiplication.

$\alpha_6\alpha_9H = (243)(132)H = (12)(34)H = H$ and $\alpha_7\alpha_{11}H = (142)(234)H = (14)(23)H \neq H$.

This shows that multiplication is not well defined for these cosets and hence the left cosets of H do not form a group under coset multiplication. This does not surprise us since we know that normality was required for well-defined.

47: Suppose that N is a normal subgroup of a finite group G and H is a subgroup of G. If $|G/N|$ is prime, prove that H is contained in N or that $NH = G$.

Let N be a normal subgroup of a finite group G, and H be any subgroup of G. Let $|G/N| = p$, a prime. Now we know that $N \subseteq NH \subseteq G$. Therefore, $p = |G : N| = |G : NH| \times |NH : N|$. Thus $|G : NH|$ is p or 1. If $|G : NH| = 1$, then $G = NH$. If $|G : NH| = p$, then $|NH : N| = 1$ so $NH = N$, which means that $H \subseteq N$.

65: If G is non-Abelian, show that $\text{Aut}(G)$ is not cyclic.

Proof. Suppose not. Let $\text{Aut}(G)$ be cyclic. Then $\text{Inn}(G)$ is cyclic since $\text{Inn}(G)$ is a subgroup of $\text{Aut}(G)$ and subgroups of cyclic groups are cyclic. We know that $\text{Inn}(G) \approx G/Z(G)$ so $G/Z(G)$ must be cyclic. But this implies that G is Abelian, which is a contradiction. Thus $\text{Aut}(G)$ is not cyclic. \square